Calendar

Mar
20
Wed
LCSR Seminar: Tom Silver, “Learning and Planning with Relational Abstractions” @ Hackerman B17
Mar 20 @ 12:00 pm – 1:00 pm

Abstract: Decision-making in robotics domains is complicated by continuous state and action spaces, long horizons, and sparse feedback. One way to address these challenges is to perform bilevel planning, where decision-making is decomposed into reasoning about “what to do” (task planning) and “how to do it” (continuous optimization). Bilevel planning is powerful, but it requires multiple types of domain-specific abstractions that are often difficult to design by hand. In this talk, I will give an overview of my work on learning these abstractions from data. This work represents the first unified system for learning all the abstractions needed for bilevel planning. In addition to learning to plan, I will also discuss planning to learn, where the robot uses planning to collect additional data that it can use to improve its abstractions. My long-term goal is to create a virtuous cycle where learning improves planning and planning improves learning, leading to a very general library of abstractions and a broadly competent robot.

Bio: Tom Silver is a final year PhD student at MIT EECS advised by Leslie Kaelbling and Josh Tenenbaum. His research is at the intersection of machine learning and planning with applications to robotics and often uses techniques from task and motion planning, program synthesis, and neuro-symbolic learning. Before graduate school, he was a researcher at Vicarious AI and received his B.A. from Harvard with highest honors in computer science and mathematics in 2016. He has also interned at Google Research (Brain Robotics) and currently splits his time between MIT and the Boston Dynamics AI Institute. His work is supported by an NSF fellowship and an MIT presidential fellowship.

 

Mar
27
Wed
LCSR Seminar: Faculty Candidate, TBD @ Hackerman B17
Mar 27 @ 12:00 pm – 1:00 pm
Apr
3
Wed
LCSR Seminar: Seth Hutchinson, “Model-Based Methods in Today’s Data-Driven Robotics Landscape @ Hackerman B17
Apr 3 @ 12:00 pm – 1:00 pm

Model-Based Methods in Today’s Data-Driven Robotics Landscape
Seth Hutchinson, Georgia Tech

Abstract:
Data-driven machine learning methods are making advances in many long-standing problems in robotics, including grasping, legged locomotion, perception, and more. There are, however, robotics applications for which data-driven methods are less effective. Data acquisition can be expensive, time consuming, or dangerous — to the surrounding workspace, humans in the workspace, or the robot itself. In such cases, generating data via simulation might seem a natural recourse, but simulation methods come with their own limitations, particularly when nondeterministic effects are significant, or when complex dynamics are at play, requiring heavy computation and exposing the so-called sim2real gap. Another alternative is to rely on a set of demonstrations, limiting the amount of required data by careful curation of the training examples; however, these methods fail when confronted with problems that were not represented in the training examples (so-called out-of-distribution problems), and this precludes the possibility of providing provable performance guarantees.

In this talk, I will describe recent work on robotics problems that do not readily admit data-driven solutions, including flapping flight by a bat-like robot, vision-based control of soft continuum robots, a cable-driven graffiti-painting robot, and ensuring safe operation of mobile manipulators in HRI scenarios. I will describe some specific difficulties that confront data-driven methods for these problems, and describe how model-based approaches can provide workable solutions. Along the way, I will also discuss how judicious incorporation of data-driven machine learning tools can enhance performance of these methods.

BIO:

Seth Hutchinson is the Executive Director of the Institute for Robotics and Intelligent Machines at the Georgia Institute of Technology, where he is also Professor and KUKA Chair for Robotics in the School of Interactive Computing. Hutchinson received his Ph.D. from Purdue University in 1988, and in 1990 joined the University of Illinois in Urbana-Champaign (UIUC), where he was a Professor of Electrical and Computer Engineering (ECE) until 2017, serving as Associate Department Head of ECE from 2001 to 2007.

Hutchinson served as president of the IEEE Robotics and Automation Society (RAS) 2020-21. He has previously served as a member of the RAS Administrative Committee, as the Editor-in-Chief for the “IEEE Transactions on Robotics” and as the founding Editor-in-Chief of the RAS Conference Editorial Board. He has served on the organizing committees for more than 100 conferences, has more than 300 publications on the topics of robotics and computer vision, and is coauthor of the books “Robot Modeling and Control,” published by Wiley, “Principles of Robot Motion: Theory, Algorithms, and Implementations,” published by MIT Press, and the forthcoming “Introduction to Robotics and Perception,” to be published by Cambridge University Press. He is a Fellow of the IEEE.

 

Apr
10
Wed
LCSR Seminar: Student @ Hackerman B17
Apr 10 @ 12:00 pm – 1:00 pm
Apr
17
Wed
LCSR Seminar: Faculty Candidate, TBD @ Hackerman B17
Apr 17 @ 12:00 pm – 1:00 pm
Apr
24
Wed
LCSR Seminar: Professional Development @ Hackerman B17
Apr 24 @ 12:00 pm – 1:00 pm