LCSR Seminar: Allison Okamura “Wearable Haptic Devices for Ubiquitous Communication”

March 8, 2023 @ 12:00 pm – 1:00 pm
Hackerman B17
Christy Brooks

Link for Live Seminar

Link for Recorded seminars – 2022/2023 school year

Allison Okamura: “Wearable Haptic Devices for Ubiquitous Communication”


Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. The amount of information that can be transmitted through touch is limited in large part by the location, distribution, and sensitivity of human mechanoreceptors. Not surprisingly, many haptic devices are designed to be held or worn at the highly sensitive fingertips, yet stimulation using a device attached to the fingertips precludes natural use of the hands. Thus, we explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.



Allison Okamura received the BS degree from the University of California at Berkeley, and the MS and PhD degrees from Stanford University. She is the Richard W. Weiland Professor of Engineering at Stanford University in the mechanical engineering department, with a courtesy appointment in computer science. She is an IEEE Fellow and is the co-general chair of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems and a deputy director of the Wu Tsai Stanford Neurosciences Institute. Her awards include the IEEE Engineering in Medicine and Biology Society Technical Achievement Award, IEEE Robotics and Automation Society Distinguished Service Award, and Duca Family University Fellow in Undergraduate Education. Her academic interests include haptics, teleoperation, virtual reality, medical robotics, soft robotics, rehabilitation, and education. For more information, please see the CHARM Lab website.

Laboratory for Computational Sensing + Robotics