RESEARCH AREAS

ASSURED AUTONOMY We focus on ensuring that autonomous systems will be trusted to operate as expected, to respond safely to unexpected inputs, to withstand corruption by adversaries, and to integrate seamlessly into society. Our research group’s interests span cyber-physical and decision support systems across domains including transportation, healthcare, and smart cities and includes research topics such as adversarial learning, trusted navigation, fairness, and privacy in AI, explainability of ML-based systems, runtime assurance of intelligent control systems, socially aware robot navigation, regression analysis for autonomy performance comparison, and more.

BIO-ROBOTICS We seek to understand the principles in mechanics, sensing, planning, navigation, and control underlying the staggering diversity of animal (including human) capabilities and translate these discoveries into new models and robotic systems. In addition, we use robotic and other synthetic systems as active physical models to discover mechanistic principles underlying complex biological phenomena. The term bio-robotics captures this synergistic interplay between biology (analysis) and robotics (synthesis): we seek to develop and share tools, experimental techniques, mathematical models, and sensing and control algorithms between and across biological and robotic systems.

HUMAN–MACHINE COLLABORATIVE SYSTEMS We aim to design collaborative machines that can work closely with people with diverse backgrounds productively and responsibly to shape the future of care, living, and work. We design different interaction strategies machines can use to assist people and model human behaviors to produce more personalized, intuitive, and intelligent behavior in collaborative machines. Drawing from human-computer interaction (HCI), robotics, and artificial intelligence (AI), this research area focuses on the innovation of interactive machines that can augment, assist, and complement people in various domains including healthcare, education, and manufacturing.

MEDICAL ROBOTS AND COMPUTER INTEGRATED INTERVENTIONAL SYSTEMS Our goal is the development of effective 3-way partnerships comprising human physicians, technology, and information to improve safety, efficacy, and cost-effectiveness of surgical interventions. This partnership can operate on an individual patient basis, but it can also facilitate continuous improvement in surgical processes, similar to its ability to improve manufacturing processes. Within this context, we focus both on the individual component subsystems and technologies (robotic devices, sensors, vision & image processing, human-machine interaction, etc.) and on their integration into complete systems driven by clinical needs.

MODELING, DYNAMICS, NAVIGATION, AND CONTROL Our goal is to understand how intelligent systems perceive, move, and interact with their environment and to design and control them to achieve desired behavior. Applications include surgical and clinical robots and devices, self-driving vehicles, space and undersea robotic systems, and clean energy systems. We develop novel computational theory and algorithms for physics-based and data-driven modeling, estimation, decision making and control. These methods are then implemented in software and deployed in full-scale, aiming to achieve safe and reliable operation even in extreme conditions. Modeling, dynamics, navigation, and control are foundational to other areas, including bio-robotics, assured autonomy, robotics in extreme environments, and medical robotics.

PERCEPTION AND COGNITIVE SYSTEMS We seek to understand and develop methods to equip systems with the ability to capture, process, and actively interpret available information. This research thrust includes the design of novel sensing devices and paradigms, the development of innovative sensor data analysis techniques, and the embodiment of these techniques in system-level gestalt. Together, the term Perception and Cognitive Systems summarizes our efforts in creating embodied intelligence that actively perceives, analyzes, and explores the environment.

ROBOTICS IN EXTREME ENVIRONMENTS We seek to develop robotic systems to enable exploration and intervention in extreme environments that are difficult, dangerous, or infeasible for humans to inhabit. These robot systems range from fully autonomous systems that perform entire missions without human intervention, to fully teleoperated systems that are remotely controlled in real-time by human operators. They very commonly utilize a mix of autonomous and teleoperated capabilities to enhance their autonomous capabilities with the knowledge, discernment, and decision-making of expert operators, engineers, and scientists. Application domains include space (orbital, planetary, and interplanetary), aerial, terrestrial, underground, and undersea missions. The goal is to enable novel robotic missions in extreme environments that are presently considered impractical or infeasible.
Robots at Johns Hopkins Whiting School of Engineering

Johns Hopkins University’s Whiting School of Engineering stands at the forefront of technological innovation in robotics, and comprises one of the largest and most technologically advanced robotics research and educational centers in the world. Its faculty and students work collaboratively and across traditional disciplinary boundaries to advance the discoveries that are revolutionizing fields ranging from national security and medicine to manufacturing.

Improving the efficacy and efficiency of health care, making complex surgeries safer and more widely available, reducing risks to first responders, enabling the exploration of outer space and of the ocean’s depths, and expanding our understanding of climate change are just some of the ways Johns Hopkins roboticists are addressing critical societal challenges.

Our faculty are world-renowned leaders in the areas of medical robotics, autonomous systems, and bio-inspired robots, and lead collaborations and translational research in partnership with affiliate clinicians and scientists from across Johns Hopkins divisions, including the Johns Hopkins School of Medicine, the Bloomberg School of Public Health, and the Johns Hopkins University Applied Physics Laboratory, as well as with international peer institutions, government, and industry. The power of this truly cross-disciplinary, collaborative approach is profound.

LCSR MISSION AND STRATEGY

Our mission is to create new knowledge and capabilities for intelligent systems and human-centered robotics, to educate a diverse workforce, to extend human reach, and to shape the future of society and the environment in a manner that enables equitable, healthy, and sustainable communities.

OUR STRATEGY

We accomplish this mission by cultivating a diverse and inclusive environment of research and teaching, pursuing interdisciplinary scientific and engineering research, translating science and technology to real-world applications, and fostering synergy and collaborations across Johns Hopkins and worldwide.

By closing the loop between perception, computation, and action, our work focuses on intelligent systems, both engineered and natural, as an essential link between the physical and computational worlds. Our systems operate inside and interact with the living body, on land, undersea, in air, and within outer space. Our research spans next-generation mechatronic design of robotic systems and devices, computational theory and software algorithms for learning, sensing, and control, and experimental robotics for scientific discovery.

We develop complete systems embodying the results of our research and discover principles of embodied intelligence in biological systems.

We use real-world applications to drive development of fundamental engineering knowledge and core capabilities in the following areas:

- Surgical and clinical robots
- Medical imaging devices
- Self-driving vehicles and autonomous mobility for everyone
- Space and undersea robotic systems
- Clean energy and sustainable environment

Our core research capabilities include:

- Imaging, Sensing, and Perception
- Computational Modeling and Simulation
- Dynamics and Control
- Motion Planning and Assured Decision Making
- Biological Systems and Natural Intelligence
- Experimental robotics
- Human-robot interactive intelligence
- Mechatronic design of intelligent systems and devices
- Machine Learning and Responsible AI
- Assured autonomous and human-machine cooperative systems
- Fault-tolerant hardware and software algorithms design
The MUSiiC research lab develops innovative ultrasound technologies for medical applications ranging from prostate and breast cancer treatment to liver ablation and brachytherapy, among others. In addition, the lab conducts research on advanced ultrasound techniques. These include photoacoustic imaging, thermometry, elastography imaging, large scale recording and stimulation of brain, and interventional ultrasound, to name but a few. Our group is based on a collaboration among researchers from the Johns Hopkins School of Medicine, the Johns Hopkins Whiting School of Engineering, and partners from other academic institutions and industry.

ACCOMPLISHMENTS

- The first co-robotic ultrasound imaging platform with hands-on cooperative force control
- The first co-robotic ultrasound imaging platform with extended synthetic tracked aperture
- The first co-robotic ultrasound tomography imaging system
- The first robotic ultrasound system for tracking a catheter with an active ultrasound source
- The first dual-armed robotic system for intraoperative ultrasound guided ablative therapy
- The first Active Ultrasound Pattern Injection System (AUSPIS)
- The first interventional photoacoustic surgical system
- The first functional nerve imaging tool using electrophysiological recording with photoacoustic sensing
- The first ultrasound thermometry imaging approach using direct time-of-flight recording
- The first photoacoustic-based catheter tracking
- The first photoacoustic-based approach for brachytherapy seed localization
- The first non-invasive ultrasound neuromodulation instrument to assess neonatal brain function
- The first bioelectric identification of aggressive prostate cancer using ultrasound stimulation
- The first use of photoacoustic energy for controlled retinal stimulation

CURRENT PROJECTS

- Photoacoustic Imaging and Fluorescence Imaging of Prostate-specific Membrane Antigen (PSMA) for Prostate Cancer Detection
- Ultrasound Tomography for Prostate Cancer Imaging: An Ex Vivo Preliminary Study
- Real-Time Ultrasound/Photoacoustic Imaging Based Surgical Guidance System for Prostatectomy in Da Vinci Surgical Robot Environment
- Volumetric Fetal Ultrasound Image Analysis for Standard Plane Localization
- Fetal Ultrasound and Photoacoustic Monitoring with ‘Patch’ Wearable Device
- Wearable Ultrasound System for Lumbar Puncture Guidance
- Vendor-independent Photoacoustic Vascular Access Guidance

Emad Boctor

Research Associate Professor
music.lcsr.jhu.edu
eboctor@jhu.edu
LABORATORIES

Advanced Medical Instrumentation and Robotics

Iulian Iordachita

AMIRO conducts research to aid and support the robotic assisted medical technology encompassing medical diagnosis and therapy, and clinical research. The main goal is to create medical robots and devices that will help clinicians deliver earlier diagnosis and less-invasive treatments more quickly and at a lower cost.

Current research includes development of MRI-compatible robots and devices for prostate cancer therapy and musculoskeletal and spinal interventions; surgical robots and medical instrumentation for microsurgery and minimally invasive surgery, and small animals research platforms for preclinical cancer research.

The AMIRO lab works closely with other research groups inside and outside of Johns Hopkins University and Hospital as well as local industries. Johns Hopkins-affiliated collaborators include the CIIS, SMARTE, BIGSS, and ASCO at LCSR, POL at ECE and DROMRS at JHH. The outside collaborators include SPL at BWH, AIM at WPI, and Xstrahl.

RECENT REFEREED JOURNAL PUBLICATIONS:

RECENT REFEREED CONFERENCE PUBLICATIONS:

CURRENT PROJECTS

Enabling Technology for Image-guided Robot-assisted Sub-retinal Injections

Adaptive Percutaneous Prostate Interventions using Sensorized Needle

MRI Compatible Robotic System for Improved Pain Injections in Adults and Children

Enabling Technology for Safe Robot-assisted Surgical Micromanipulation

Automated Mosquito Salivary Gland Removal

Iulian Iordachita
Research Professor
Department of Mechanical Engineering
iordachita@jhu.edu
Aero- and hydrodynamics have helped us understand how animals fly and swim and to develop aerial and aquatic vehicles that move through air and water rapidly, agilely, and efficiently. By contrast, we know surprisingly little about how terrestrial animals move so well in nature, and even the best robots still struggle in complex terrains like building rubble, forest floor, mountain boulders, and cluttered indoor environments. Lab researchers are developing experimental tools and theoretical models to create terradynamics, a new field that describes these complex locomotor-terrain interactions uses terradynamics to better understand animal locomotion and to advance robot locomotion in complex terrains.

ACCOMPLISHMENTS
Published 20 journal articles, two conference papers. Published 42 conference abstracts in 2021 and 2022.

Awards and Honors
Outstanding Locomotion Paper Finalist, IEEE International Conference on Robotics and Automation, 2022
Paper selected as Editor’s Choice, Advanced Intelligent Systems, 2022
Space@Hopkins Award, Johns Hopkins University, 2021
Trusted Reviewer Award, Institute of Physics, 2021

Mentor Awards
Life Sciences Research Foundation Postdoctoral Fellowship Finalist (Ratan Othayoth), 2022
First Place, REU Research Presentation (Jonathan Mi), Laboratory for Computational Sensing & Robotics, Johns Hopkins University, 2021
James F. Bell Award (Kaiwen Wang), for outstanding research and scholarly achievement, Department of Mechanical Engineering, Johns Hopkins University, 2021

OUTREACH
Glenelg High School, Engineering Speaker Series, 2021
Centennial High School, Robotics Team Virtual Research Tour, 2021

RECENT PUBLICATIONS

CURRENT PROJECTS
The Terradynamics of Biological Movement in Complex Terrain
Neuromechanics of Legged Locomotion on Energy Landscapes of Complex Terrains
Simulation of Multi-legged Robot Locomotor Transitions to Traverse Rocky Martian Terrain
Soft-rigid and Sensing Integrated Snake Robot to Traverse Complex 3-D Terrain

Chen Li
Assistant Professor
Department of Mechanical Engineering
li.me.jhu.edu
chen.li@jhu.edu
Sensing, Manipulation, and Real-Time Systems (SMARTS) — smarts.lcsr.jhu.edu

Current Projects
- Telerobotic Satellite Servicing
- Augmented Reality Assistance for Robotic Surgery
- Force Estimation for Surgical Robotics
- Next-generation da Vinci Research Kit (dVRK-Si)
- AccelNet Surgical Robotics Challenge

Recent journal publications

Recent accomplishments

Recent journal publications

Recent projects
- Telerobotic Satellite Servicing
- Augmented Reality Assistance for Robotic Surgery
- Force Estimation for Surgical Robotics
- Next-generation da Vinci Research Kit (dVRK-Si)
- AccelNet Surgical Robotics Challenge

Contact Information
Peter Kazanzides
Research Professor
Department of Computer Science
smarts.lcsr.jhu.edu
pkaz@jhu.edu

Department of Computer Science
The Sensing, Manipulation, and Real-Time Systems (SMARTS) lab focuses on components and integrated systems for computer-assisted surgery and robotics in extreme environments. This includes the integration of real-time sensing and imaging to enable robotic assistance in more challenging settings, such as minimally invasive surgery, microsurgery and space (e.g., teleoperation with time delay of several seconds for satellite servicing). The lab also performs research in augmented/mixed reality for human/machine collaboration, including the use of head-mounted displays (HMDs) and novel input devices. Research in component technologies includes high-performance motor control, sensing, and sensor fusion. The lab emphasizes system integration activities, including system architectures and component-based software engineering, and is responsible for the development and support of the open source da Vinci Research Kit (dVRK).

Recent Journal Publications

The Sensing, Manipulation, and Real-Time Systems (SMARTS) lab focuses on components and integrated systems for computer-assisted surgery and robotics in extreme environments. This includes the integration of real-time sensing and imaging to enable robotic assistance in more challenging settings, such as minimally invasive surgery, microsurgery and space (e.g., teleoperation with time delay of several seconds for satellite servicing). The lab also performs research in augmented/mixed reality for human/machine collaboration, including the use of head-mounted displays (HMDs) and novel input devices. Research in component technologies includes high-performance motor control, sensing, and sensor fusion. The lab emphasizes system integration activities, including system architectures and component-based software engineering, and is responsible for the development and support of the open source da Vinci Research Kit (dVRK).

Recent Journal Publications
The DSCL focuses on problems in the navigation, dynamics, and control of linear and nonlinear dynamical systems, observers, nonlinear systems analysis, modeling, and sensing relevant to robots that interact dynamically in extreme environments. DSCL researchers focus on problems motivated by several application areas that share a common underlying mathematical framework, including underwater robotics, space telerobotics, and medical robotics.

Lab Director Louis Whitcomb and his students have participated in the development of numerous underwater vehicles for oceanographic science missions including the Nereus hybrid underwater vehicle that dove to the bottom of the Mariana Trench in 2009, and Nereid Under-Ice (NUI) hybrid underwater vehicle that was deployed under Arctic sea ice at 87°N 61°E in 2016. Recent deployments include a 10-day expedition aboard the RV Atlantic Explorer with the Sentry AUV to the Bowditch Seamount in 2018, and numerous deployments JHU Iver-3 AUV in the Chesapeake Bay 2015-Present. Our methodology is to address fundamental theoretical issues with concise mathematical analysis, and to experimentally validate our research results in actual working systems.

ACCOMPLISHMENTS

Recent Refereed Journal Publications

Recent Refereed Conference Publications

CURRENT PROJECTS

Development of Nereid Under-Ice (NUI): An Underwater Robot for Oceanographic Exploration Under Polar Ice

Development of a Low-cost True-north Seeking Fiber Optic Gyrocompass for Precision Underwater Robot Navigation

Precision Navigation of Underwater Robotic Vehicles for Ocean Science

Telerobotic Satellite Servicing

LABORATORIES

The Department of Mechanical Engineering is dedicated to the advancement of engineering knowledge and its application to the service of society. The department is committed to excellence in education and research, and to the development of new technologies that will improve the quality of life. The department offers a wide range of degree programs in mechanical engineering, including undergraduate, graduate, and professional degrees. The department is located in the Engineering Building on the Homewood campus of the Johns Hopkins University.
The Autonomous Systems, Control and Optimization Laboratory (ASCO) aims to create robots with unprecedented agility and robustness that can fully exploit their dynamical and sensing abilities to operate in natural environments. Such systems will be aware of the complex interaction between mechanics, perception, and control, and will compute adaptively with performance guarantees in the presence of uncertainties.

The lab performs research in analytical and computational methods at the intersection of dynamical systems and control, optimization, and statistical learning, and in the design and integration of novel mechanisms and embedded systems. Current application areas are 1) autonomy in mobile (ground and aerial) robots and small spacecraft, and 2) computational tools for control and optimization of multi-body mechanical systems.

ACCOMPLISHMENTS
Demonstrated the successful development of theory, algorithms and software, and deployment on autonomous systems (self-driving cars, aerial drones, and underwater vehicles) operating in the real world.

RECENT PUBLICATIONS
P. Rivera, M. Kobilarov, Decentralized Safety for Aggressively Maneuvering Multi-Robot Interaction, American Control Conference (ACC), (1/2022)

CURRENT PROJECTS
Robotics Environmental Sampling
Autonomous Aerial Manipulation
Autonomously Navigating a Surgical Tool Inside the Eye by Learning from Demonstration

Illustration of Robot-Assisted Surgeons
Surgeon’s view (rubber eye model)
Work in the IMERSE lab focuses on both fundamental and translational research in the development of novel tools, imaging, and robot control techniques for medical robotics. Specifically, the lab investigates methodologies that (i) increase smartness and autonomy and (ii) improve image guidance of medical robots to perform previously impossible tasks, improve efficiency, and ultimately enhance patient outcomes.

ACCOMPLISHMENTS
2022 Student Star (Byeol) Kim successfully graduated with her PhD thesis titled “Advances in Diagnosis and Surgery of Congenital Heart Disease Through Novel Virtual Reality Systems for Design, Simulation, and Planning Methods.”
2022 Latest research work on first autonomous laparoscopic surgery published in Science Robotics.
2022 Dr. Krieger was awarded the National Science Foundation’s Early CAREER Award to support our research on advancing autonomy for soft tissue robotic surgery and interventions.
2022 PeriCor, a company co-founded by PhD student Justin Opfermann and Dr. Krieger, has been awarded a Phase II Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH).

RECENT PUBLICATIONS

ONGOING PROJECTS
Autonomous Robotic Soft Tissue Surgery
Image Guided Interventions and Planning
Autonomous Robotic Ultrasound
Magnetically Actuated Microbots
Cardiac Planning and Patient Specific Implant Design
The Computer-Integrated Interventional Systems (CiIS) Lab focuses on all aspects of medical robotics and computer-integrated interventional medicine, as well as related subject areas in medical image analysis, robotics, and human-machine cooperation. The lab’s overall strategy is to create a three-way partnership between humans, technology, and information to fundamentally improve surgery and other medical procedures by making them safer, less invasive, and more effective.

The CiIS lab collaborates closely with other labs within LCSR and the Malone Center for Engineering in Healthcare, with surgeons and others in the Johns Hopkins Engineering School and School of Medicine, and with research groups and institutions around the world.

ACCOMPLISHMENTS

Some recent research accomplishments (many undertaken with other LCSR labs) include robot assisted microsurgery (steady hand eye robot, ENT robot), surgical control and planning, snake robot, deformable human anatomical models, smart surgical instruments, treatment plan optimization in radiation oncology, image overlay, a laparoscopic-assisted robot system, robot assisted ultrasound and MRI compatible robots, and a system for automatic dissection of mosquitoes for malaria vaccine production.

The REMS head-and-neck microsurgery robot developed within CiIS by Kevin Olds is being commercialized by a startup company, Galen Robotics, which is also sponsoring research within LCSR.

Starting with its existence within the CISST ERC, the CiIS lab has produced more than 500 peer reviewed journal articles and data generation, and more than 50 U.S. and international patents. These have led to many “best paper” awards. A few selected recent publications are below.

RECENT PUBLICATIONS

The lab has produced many “best paper” awards. A few selected recent publications are below.

CURRENT PROJECTS

- Assured Autonomous Control of ICU Ventilators (with Tony Dahbura)
- 3D Reconstruction of Sinus Anatomy from Monocular Endoscopic Video using Self-supervised Learning (with Roderic Grup"
- X-ray Image-based Navigation for Periacetabular Osteotomy with Intraoperative Biomechanical Feedback
- Robot-assisted Confocal Endoscopic Imaging for Retinal Surgery
- Automated Mosquito Salivary Gland Removal
- Steady-hand Robot for Head-and-Neck Surgery
- Deformable Registration using Statistical Shape Models

Human-machine partnership to fundamentally improve interventional medicine

Complementary Situational Awareness for Intelligent Telebotic Surgical Assistant Systems
Enhanced Navigation for Endoscopic Sinus Surgery through Video Analysis
Image-based Modeling and Analysis of Anatomic Structures in the Human Temporal Bone
Real-time Modeling and Registration of 3D Surgical Field from Surgical Microscope Data
Virtual Reality Simulator for Temporal Bone Surgery

Russell H. Taylor
John C. Malone Professor
Professor, Department of Computer Science
Director, Laboratory for Computational Sensing and Robotics
cis.lcsr.jhu.edu
cs.jhu.edu/~rht
rht@jhu.edu
The Computational Interaction and Robotics Laboratory (CIRL) is devoted to the study of problems that involve dynamic, spatial interaction at the intersection of imaging, robotics, and human-computer interaction. The laboratory has a number of ongoing projects in this area. The Language of Motion project seeks to develop new methods to recognize and evaluate human activities and skilled human manipulation, with a particular emphasis on surgery. Applications include automated skill evaluation, training, and human-robot collaborative task execution. Other work is aimed at machine learning to create systems that perform complex manipulation tasks.

CIRL also works in the area of medical imaging. Interactive computer-aided diagnostic systems based on images are also an area of interest. The CIRL lab has made advances in a number of areas, including automated systems for surgical workflow analysis and surgical coaching, collaborative systems for manufacturing, perception and learning-based manipulation, and video-CT registration for surgical navigation.

RECENT PUBLICATIONS

Why is it that a chess engine easily defeats any human grandmasters, but a child can move the pieces with greater agility than the best robots? The LIMBS lab approaches this broad question by applying dynamical systems and control theory to discover principles of how the brain and body work together to achieve agile movement. We study problems in neuromechanics, locomotion, control theory, system identification, and robotics. Central to the LIMBS mission is working collaboratively with neuroscientists.

ACCOMPLISHMENTS
In the past few years, we have published our work in multiple flagship journals including Nature, Scientific Reports, Current Biology, and IEEE Transactions on Automatic Control, among others, including a review of the application of control theory to neuroscience in Annual Reviews of Control, Robotics, and Autonomous Systems. In collaboration with researchers at Hopkins and other institutions, the LIMBS laboratory has garnered more than $5 million in extramural funding over the last few years. Funding agencies include the National Institutes of Health, National Science Foundation, and Department of Defense.

RECENT PUBLICATIONS
The Haptics and Medical Robotics (HAMR) Laboratory seeks to extend knowledge surrounding the human perception of touch, especially as it relates to applications of human/robot interaction and collaboration. We are particularly interested in medical robotics applications such as minimally invasive surgical robots, upper-limb prosthetic devices, and rehabilitation robots. To solve many of the problems in these areas, we apply techniques from human perception, human motor control, neuromechanics, and control theory.

ACCOMPLISHMENTS
We were recently awarded an NSF CAREER Award to investigate novel haptic shared control approaches for upper-limb prosthetic devices, and a Sloan Foundation Fellowship to investigate fundamental principles of haptic perception. In addition, lab member Sergio Machaca was recently awarded a Link Foundation Modeling, Simulation, and Training Fellowship to investigate the utility of bimanual haptic feedback in robotic minimally invasive surgery training.

RECENT PUBLICATIONS

CURRENT PROJECTS
Antropomorphically Driven Upper-extremity Prosthesis
Robot-assisted Minimally Invasive Surgical Training
Neuroergonomic Evaluation on Haptic Feedback in Upper-Extremity Prostheses
Sensorimotor-inspired Control for Upper-extremity Prostheses
Haptic Perception and Task Performance During Non-transparent Teleoperation
The Biomechanical-and Image-Guided Surgical Systems (BIGSS) laboratory focuses on developing innovative surgical guidance systems involving novel robots, advanced imaging, and real-time biomechanical assessments to improve surgical outcomes.

BIGSS researchers develop and test robotic workstations to assist in surgeries for treating bone defects by designing and applying continuum manipulators, imaging, visualization, and biomechanical analysis. The BIGSS research focuses on developing technologies for treatment of osteonecrosis of the hip, osteolysis during hip revision surgery, spinal stenosis, osteoporosis, dysplasia, femoro-acetabular impingement, and cranial deformities. The BIGSS lab also investigates developing full body imaging systems for diagnosing and monitoring of skin cancer as well as robotic systems for neurological applications involving transcranial magnetic stimulation.

RECENT PUBLICATIONS

CURRENT PROJECTS
Continuum Robots, Tools, and Algorithms for Tissue Manipulation
Perceptual Visualization for Surgical Guidance in Orthopaedics Using Augmented Reality
Total Body Imaging for Skin Cancer Detection
Automated Implant Modification for Neuroplastic Surgery
Robot-Assisted Femoroplasty
Robot-Assisted Transcranial Magnetic Stimulation
X-ray Image-based Navigation for Periacetabular Osteotomy with Intraoperative Biomechanical Feedback

Mehran Armand
Professor, Orthopaedic Surgery, Mechanical Engineering and Computer Science (cross appointment)
Principal Staff Member, Johns Hopkins University Applied Physics Laboratory
bigss.lcsr.jhu.edu
marmand2@jhu.edu
The Advanced Robotics and Computationally Augmented Interests Environments (ARCADE) lab advances healthcare by creating collaborative intelligent systems that support clinical workflows. Through synergistic research on imaging, computer vision, machine learning, and interaction design, we build human-centered solutions that are embodied in emerging technology such as mixed reality and robotics. Its researchers collaborate closely with clinical stakeholders such as providers to understand clinical workflow, identify opportunities and constraints, and facilitate translation. The lab is based on Homewood campus and is affiliated with the Laboratory for Computational Sensing and Robotics and the Malone Center for Engineering in Healthcare.

ACCOMPLISHMENTS

Our work on innovative solutions for computer-assisted healthcare has been well received. Only in the last two years, our work has won several international best paper awards, including:

- **Top Three Abstract Award at the American Academy of Pediatrics National Conference 2022**
- **Runner Up, Best Paper Award in Medical Physics at SPIE Medical Imaging 2022**
- **Best Paper Award in Bioengineering at IEEE BIBE 2021**
- **Outstanding Paper Award at MICCAI AE-CAI 2021**
- **Best Paper Award in the Medical Robotics Track at ICRA 2021**

RECENT PUBLICATIONS

CURRENT PROJECTS

- **Task-aware and Autonomous C-arm Imaging**
- **3D Reconstruction of Sinus Anatomy from Monocular Endoscopic Video using Self-supervised Learning**
- **Transparent Machine Learning for Healthcare**
- **SyntheX: Scaling Up Learning-based X-ray Image Analysis Through in Silico Experiments**
- **Mixed Reality for Surgical Guidance**
- **Enhanced Navigation for Endoscopic Sinus Surgery through Video Analysis**
- **Real-time Modeling and Registration of 3D Surgical Field from Surgical Microscope Data**
- **Virtual Reality Simulator for Temporal Bone Surgery**

Contact Information

Mathias Unberath
Assistant Professor
Department of Computer Science
arcade.cs.jhu.edu
mathias@jhu.edu
The CAMP laboratory develops next generation solutions for computer assisted interventions. The complexity of surgical environments requires us to study, model, and monitor surgical workflow, enabling the development of novel patient and process specific imaging and visualization methods. Due to the requirements of flexibility and reliability, CAMP researchers work on novel robotized multi-modal imaging solutions. To satisfy challenging usability requirements, they focus on data fusion and its interactive representation within augmented reality environments. The lab creates a bridge across the Atlantic Ocean by hosting researchers working for Prof. Alejandro Martin-Gomez at JHU in Baltimore and Prof. Nassir Navab at TUM in Germany.

ACCOMPLISHMENTS
2 Papers Accepted at 2020 IEEE International Symposium on Mixed and Augmented Reality
1 Paper Accepted at 2020 IEEE Robotics and Automation Letters
1 Paper Accepted at 2020 IEEE Transactions on Medical Imaging

RECENT PUBLICATIONS
The PULSE Lab integrates light, sound, and robots to develop innovative biomedical imaging systems that simultaneously address unmet clinical needs and improve patient care. The PULSE Lab’s emphasis is diagnostic and surgical ultrasound and photoacoustic technologies, with applications in neurosurgery, cancer detection and treatment, and women’s health. PULSE Lab technologies are designed to benefit patients through research-related clinical translation opportunities.

ACCOMPLISHMENTS
- Alycen Wiacek wins AIUM New Investigator Award
- Alycen Wiacek selected as the 2021-2022 ICM Foundation Graduate Scholar of the Achievement Rewards for College Scientists (ARCS) Foundation, Metropolitan Washington Chapter
- Jessica Su selected as the 2021-2022 Bill & Marilyn Sweetser Undergraduate Scholar of the Achievement Rewards for College Scientists (ARCS) Foundation, Metropolitan Washington Chapter

RECENT PUBLICATIONS
- González EA, Bell MAL, Dual-wavelength photoacoustic atlas method to estimate fractional methylene blue and hemoglobin contents, Journal of Biomedical Optics, 27(0) 096002, 2022
- Zhao L, Bell MAL, A review of deep learning applications in lung ultrasound imaging of COVID-19 patients, BME Frontiers, 2022 [Invited Review]

OTHER INFO
Our highly interdisciplinary research agenda integrates optics, acoustics, robotics, signal processing, and medical device design, to significantly improve the standard of patient care. We develop theories, models, and simulations to investigate advanced beamforming techniques for improving ultrasonic and photoacoustic image quality. In parallel, we design and build novel light delivery systems for photoacoustic imaging and incorporate medical robots to improve operator maneuverability and enable standardized procedures for more personalized medicine. Our technologies are then interfaced with patients treated at the Johns Hopkins Hospital to facilitate clinical translation of the devices, methods, and tools developed in our lab. These techniques and technologies have applications in neurosurgical navigation, women’s health, coronary artery disease, early cancer detection, and improved cancer treatment.

CURRENT PROJECTS
- Deep Learning Approach to Photoacoustic Visual Servoing
- Photoacoustic-guided Hysterectomy
- Deep Learning COVID-19 Features in Lung Ultrasound Images
The Intuitive Computing Laboratory seeks to innovate interactive robot systems to provide personalized physical, social, and behavioral support to people with various characteristics and needs. The interdisciplinary IC lab designs, builds, and studies intuitive interaction capabilities of robotic systems to improve their utilities and user experience. Lab researchers draw on principles and techniques from human-computer interaction, robotics, and machine learning in their research and are interested in using their systems to address problems in health care, education, and collaborative manufacturing.

Human-Robot Teaming

Robots that are capable of working alongside humans hold great promise in augmenting people’s capabilities and productivity. To enable seamless human-robot teamwork, we aim to (a) understand how people work together as a team in achieving common goals, (2) develop interactive robot systems that can work cooperatively with people as informed by our understanding of human teamwork, and (3) deploy and evaluate how cooperative robots may increase task performance and enhance user experience. We have focused on (i) deciphering human behavioral cues (e.g., eye gaze) for recognizing task intent (RSS’15, HRI’16), (ii) synthesizing intuitive robot behaviors to facilitate collaborative activities (HRI’14), and (iii) developing interfaces and methods for people to re-skill robots to perform custom tasks (IUI’19).

Socially Assistive Robotics

Socially assistive robots (SAR) provide assistance through social, as opposed to physical, interactions and have potential to provide cognitive, behavioral, and therapeutic support for people with diverse characteristics and needs. Our research has explored (1) how SARs can positively impact children’s learning by providing timely cognitive (HRI’17) and meta-cognitive (HRI’18) support and (2) how SARs can aid in behavioral intervention for children with Autism Spectrum Disorders (ASD) (Science Robotics).

ACCOMPLISHMENTS

CURRENT PROJECTS

Human–robot Co-navigation
Human–machine Teaming for Medical Decision Making
Accessible Robot Programming
Socially Assistive Robots for Behavioral Interventions

Chien-Ming Huang
Assistant Professor
Department of Computer Science
intuitivecomputing.github.io
chienming.huang@jhu.edu
The Photonics and Optoelectronics (PO) Laboratory conducts experimental and theoretical investigations in the area of photonics and optoelectronics with an emphasis on developing novel fiber optic imaging and sensor systems, novel fiber laser systems, and ultrafast fiber optic and optoelectronic devices. These developments have applications in the areas of medicine, communications, and the space sciences.

The PO lab is currently developing optical coherence tomography (OCT) techniques for medical imaging and sensing; these systems have enabled the development of microsurgical and robotic tools that allow safer, more precise surgical outcomes. The lab was the first to develop and demonstrate real-time 3D video monitoring of surgical sites during operations.

The lab works closely with the NASA, FDA, ARL, NIST, NRL as well as local industries and other research groups in and outside the Johns Hopkins University.

ACCOMPLISHMENTS AND PUBLICATIONS

Dr. Kang recently launched a JHU Fast Forward startup company, LIV (Live Imaging Vision) Med Tech Inc., to commercialize OCT image-guided robotic tools.

2022

2021

2020

CURRENT PROJECTS

- Endoscopic Fringe Projection Profilometry for Robot Assisted Intestine Anastomosis
- Artificial Intelligence Optical Coherence Tomography Guided Deep Anterior Lamellar Keratoplasty (AUTO-DALK)
AREAS OF IMPACT

COLOR KEY FOR RESEARCH AREAS

ASSURED AUTONOMY

BIOROBOTICS

HUMAN MACHINE COLLABORATIVE SYSTEMS

MEDICAL ROBOTS AND COMPUTER INTEGRATED INTERVENTIONAL SYSTEMS

MODELING, DYNAMICS, NAVIGATION, AND CONTROL

PERCEPTION AND COGNITIVE SYSTEMS

ROBOTICS IN EXTREME ENVIRONMENTS
Accomplishment: The group, consisting of faculty members in LCSR, IAA, MCEH, and the SoM, have defined a project that uses digital twins, reinforcement learning, and trust monitors to architect an autonomous mechanical ventilator control system with an extremely high degree of trustworthiness for use in ICUs.

Status: Initial phases

Funding: JHU internal funding

Key Personnel: Russ Taylor, CS, LCSR and MCEH; James Fackler, SoM and MCEH; Jules Bergmann, SoM; Kimia Ghobadi, AMS, CaSE and MCEH; Anton Dahbura, CS, IAA, LCSR and MCEH; Khalid Halba, CS, Antwan Clark, AMS

Patents and Disclosures: In process

For More Information: AntonDahbura@jhu.edu

Status: Increased autonomy has transformed fields such as manufacturing and aviation by drastically increasing efficiency and reducing failure rates. While pre-operative planning and automation have also improved the outcomes of surgical procedures with rigid anatomy, practical considerations have hindered progress in soft-tissue surgery mainly because of unpredictable shape changes, tissue deformations, and motions limiting the use of pre-operative planning. Our research aims to overcome these challenges through: Robotic Tools, Improved Surgical Sensing, and Robot Control Strategies.

Robotic Tools—We are developing specialized robotic tools that eliminate the need for complex motions and reduce tissue deformations and tissue changes by incorporating the maneuverability and complex actuations in the tool tip.

Improved Surgical Sensing—We are investigating novel surgical imaging techniques to enable high-fidelity quantitative perception and tracking of soft tissue targets that are in constant motion and deformation due to patient breathing, peristalsis, and tool interactions.

Robot Control Strategies—We are developing novel robot control methods that increase the autonomy of surgical robots and effectively enhance the surgeon’s capabilities.

Key Personnel: Michael Kam, Jiawei Ge, Justin Opfermann, Noah Barnes, Idris Sunmola, Jesse Haworth, James Kaluna, Axel Krüger

For More Information: immerse.lcsr.jhu.edu
Image Guided Interventions and Planning

PI: Axel Krieger

Medical Robots and Computer Integrated Interventional Systems

Status
Diagnostic imaging has dramatically improved over the years to the point at which small tumors and defects now are often detectable before they affect a patient's health. However, in many cases imaging during intervention and surgery is limited to basic color cameras, resulting in missed tumors and sub-optimal surgical results. Our research focuses on improving image guidance and image display during planning, intervention, and surgery. This often requires specialized robots to work alongside the imaging technique and novel displays.

Magnetic Resonance Imaging (MRI) Guided Prostate Interventions—MRI has higher sensitivity in detecting prostate cancer compared to ultrasound, the current standard for image guided prostate biopsy. The first to develop and deploy in the clinic an integrated robotic system for trans-rectal robotic prostate biopsy under MRI guidance.

3D Printing and Displays—Congenital heart defects (CHD) are the most common congenital defects, often require open-heart surgery, and are among the leading causes of death in newborns. Despite the rich 3D information provided by cardiac imaging, the display of this information is still largely constrained to viewing multiple contiguous 2D slices of the 3D scan, which is sub-optimal. We are developing novel methods to visualize CHD using 3D printing and 3D displays for education, procedural planning, and patient-specific implant designs.

Key Personnel: Xiaolong Liu, Seda Aksan, Lydia Zoghbi, Axel Krieger

For More Information: imerse.lcsr.jhu.edu

Autonomous Robotic Ultrasound

PI: Axel Krieger

Assured Autonomy

Medical Robots and Computer Integrated Interventional Systems

Status
Unintentional injury or trauma is among the leading causes of death in the United States with up to 29% of pre-hospital trauma deaths attributed to uncontrolled hemorrhages. Our research focuses on developing a fully autonomous robotic system for performing ultrasound scans and analysis en route to the hospital for earlier trauma diagnosis and faster initialization of lifesaving care. We develop image-based novel techniques enabling improved ultrasound imaging of chest organs, as well as design robotic systems for therapeutic intervention, such as aortic balloon insertion.

Key Personnel: Lydia Zoghbi, Pranathi Golla, Axel Krieger

For More Information: imerse.lcsr.jhu.edu
Magnetically Actuated Microrobots

PI: Axel Krieger
Medical Robots and Computer Integrated Interventional Systems

Status: Magnetic fields are capable of exerting forces and torques onto remote magnetic surgical tools located inside a patient's body, allowing to obviate the physical connections with the standard robotic arm structures. This unique feature of magnetic robots provides a promising pathway to miniaturize surgical tools for the next generation of surgical systems, all while minimizing tissue trauma and enhancing patient comfort. As a target medical application, we focus on magnetic suturing, where a magnetic needle is guided to penetrate various tissue layers to complete a suturing task. Our ongoing research focuses on enhancing the penetration capability and system-level intelligence by merging digital and physical intelligence.

Key Personnel: Onder Erin, Trevor Schwehr, Will Pryor, Axel Krieger

For More Information: imerse.lcsr.jhu.edu

Cardiac Planning and Patient Specific Implant Design

PI: Axel Krieger
Medical Robots and Computer Integrated Interventional Systems

Status: We use surgical planning tools to design and manufacture patient-specific tissue-engineered vascular grafts for pediatric patients who suffer from congenital heart defects. Computational fluid dynamics simulations are used to obtain the hemodynamics in the native anatomy and to design grafts that will optimize the hemodynamics by repairing the defect in the native geometry. Our surgical planning software Corfix allows doctors to visualize the anatomy in 3D, diagnose the defected region, and create optimized patient specific grafts. The simulation results of the designed grafts are also visualized in Corfix to assess the hemodynamic performance before the surgery.

Key Personnel: Xiaolong Liu, Seda Aslan, Qiyuan Wu, Axel Krieger

For More Information: imerse.lcsr.jhu.edu
The Terradynamics of Biological Movement in Complex Terrain

PI: Chen Li

| Assured Autonomy | Bio-Robotics | Modeling, Dynamics, Navigation, and Control | Robotics in Extreme Environments |

Published 20 journal papers; submitted 2 conference papers
Discovered general principles of legged locomotor transitions in complex 3D terrain across model systems of beam, gap, bump, and vertical pillar traversal
Developed strategies for robots to modulate their locomotor mode transitions and improve large obstacle traversal and self-righting performance
Developed a legged robot (OmniRoach) capable of traversing multiple types of large obstacles and self-righting
Developed a minimalistic, stochastic dynamics model and its simulation to understand dynamics of cluttered obstacle traversal

Developed continuous 3D reconstruction methods for studying motion of limbless animals
Revealed the benefits of body compliance for snakes traversing large vertical obstacles using a robotic model
Discovered that snakes use lateral and vertical bending to traverse uneven terrain

Status: Ongoing

Funding: Burroughs Welcome Fund Career Award at the Scientific Interface

Key Personnel: Qiyuan Fu, Divya Ramesh, Ratan Othayoth, Qihan Xuan, Yaqing Wang, Sean Gart, Tommy Mitchell, Chen Li

Neuromechanics of Legged Locomotion on Energy Landscapes of Complex Terrains

PI: Chen Li

| Assured Autonomy | Bio-Robotics | Modeling, Dynamics, Navigation, and Control | Robotics in Extreme Environments |

Published nine journal papers and two conference papers
Discovered that cockroaches actively adjust body and appendages to facilitate traversal of large obstacles
Created a novel terrain treadmill to study animal locomotion through large obstacles at large spatiotemporal scales
Developed robotic physical models capable of 3D body bending, contact force sensing, and feedback control to study how legged insects and limbless snakes traverse obstacles in complex 3D terrain
Demonstrated that legged and limbless robots using environmental force sensing can traverse cluttered obstacles with interaction

Status: Completed

Funding: Arnold and Mabel Beckman Foundation

Key Personnel: Yaqing Wang, Ratan Othayoth, Divya Ramesh, Qiyuan Fu, Qihan Xuan, Chen Li

Abdomen bending
Head bending
Leg bending
Leg sprawl
Supporting Leg Height
Pushing Leg Height
2D leg trajectory
Simulation of Multi-legged Robot Locomotor Transitions to Traverse Rocky Martian Terrain

PI: Chen Li

Assured Autonomy ▌ Bio-Robotics ▌ Modeling, Dynamics, Navigation, and Control ▌ Robotics in Extreme Environments

Published a journal paper
Developed simulation-based experiments to study obstacles traversal and locomotor transitions performance in rocky, extraterrestrial environments.
Simulated strategies for a multi-modal legged robot to achieve desired locomotor transitions via physical interaction with environment.

Status: Completed
Funding: Space@Hopkins
Key Personnel: Qihan Xuan, Eugene Lin, Chen Li, Kevin Lewis

Soft-rigid and Sensing Integrated Snake Robot to Traverse Complex 3-D Terrain

PI: Chen Li

Assured Autonomy ▌ Bio-Robotics ▌ Modeling, Dynamics, Navigation, and Control ▌ Robotics in Extreme Environments

Published one conference paper; one journal paper in revision
Developed a rigid snake robot with distributed contact force sensors that can sense terrain information and adapt bending patterns to traverse uneven terrain.
Developed a snake robot with compliant shells and distributed soft contact force sensors capable of 3-D movement and sensing 3-D contact forces.
Discovered that contact sensory feedback can significantly improve snake-like locomotors' ability to adapt to uneven terrain and maintain propulsion.

Status: Completed
Funding: Johns Hopkins University Catalyst Award
Key Personnel: Qiyuan Fu, Divya Ramesh, Chen Li
Human–Robot Co-Navigation

PI: Chien-Ming Huang

Key Personnel: Kapil Katyal, I-Jeng Wang

Funding: JHU IAA seed fund

Accomplishments and Status: As we build and transition into the autonomous future, it is critical to place people at the center of our disruptive innovations. Therefore, this research aims to design, develop, and evaluate human-centered assured autonomy; we focus this project particularly on socially aware robot navigation in human environments. While abundant research has explored techniques for enabling mobile robots to navigate in human environments, most efforts have been on avoiding collisions with dynamic (e.g., people) and static (e.g., environmental constraints) obstacles and have treated pedestrians as individual entities neglecting social grouping and their interactions. However, to maximize utility and ensure a wide acceptance and trust of intelligent mobile robots in assisting human work, we need to probe beyond simple obstacle avoidance and consider the more complicated aspects of social norms and interpersonal interactions in naturalistic human environments. This research particularly addresses the aspects of technology and ecosystem in assured autonomy.

Through three research thrusts, the team will investigate (1) dynamic social groups in human environments; (2) socially aware robot navigation; and (3) the longer-term effects of deploying mobile robots in naturalistic human environments. The successful integration of autonomous mobile robots into human spaces has the opportunity to revolutionize the future of human work. Our collaborative efforts in human-centered assured autonomy will help guide this revolution and contribute to the creation of a productive human-robot ecosystem. This project expects to generate tangible products, including (a) scholarly publications, (b) an open-source software testbed for simulating human social groups and navigation, (c) a physical testbed for studying social navigation, (d) a field deployment of human-robot co-navigation, and (e) guidelines for designing autonomous mobile robots and smart environments for near-term effective human-robot interaction.

Human–Machine Teaming for Medical Decision Making

PI: Chien-Ming Huang

Key Personnel: Suchi Saria

Funding: NSF

Accomplishments and Status: Algorithmic advances in artificial intelligence are transforming human work in diverse areas including transportation, finance, national security, and medicine. Machine intelligence presents opportunities to increase human work productivity and the quality of jobs through augmenting human capabilities. Effective teaming between humans and intelligent machines similar to effective human-human teamwork has the potential to yield significant near-term gains. This project explores the challenges of human-machine teaming in medical decision making. Health care is one of the most difficult challenges that the United States is facing. The U.S. spends $3 trillion dollars in health care each year, while medical error is the third leading cause of death. Human-machine cognitive teaming creates a new model of patient care in which providers team with intelligent cognitive assistants to enhance quality of care under time pressure, taxing workloads, and uncertainties in medical conditions. This project explores the potential for effective human-machine teaming to mitigate such challenging problems in health care.

Specifically, this project seeks to understand (1) whether human-machine teaming can benefit medical decision making and decision making in other related high stakes domains; (2) the guiding principles for designing effective human-machine teams; (3) barriers that currently exist for building such teams; (4) novel solutions needed to address barriers in order to develop highly performant teams; and (5) the economic and societal impacts of the planned approach for human-machine teaming. Understanding effective human-machine teaming, including the broader implications in the workspace and in human workflows, will contribute to positive transformation of human work. In particular, it is anticipated that the outcomes of this project will result in improvements in hospital utilization and reduction of medical errors. The project integrates multiple disciplinary perspectives, including computer science, medical expertise, health policy, and decision making. The impacts of the research will extend to multiple hospitals in the Baltimore region. Furthermore, the project will engage local high school students in summer research experiences, and the outcomes of the research will be integrated into undergraduate curricula.

Accomplishments and Status: The goal of accessible robot programming is to empower everyday people who may not have technical training or backgrounds to be able to author robotic assistance to meet their needs and contextual constraints. Collaborative robots are envisioned to assist people in an increasing range of domains, from manufacturing to home care, however, due to the variable nature of these fields, such robots will inevitably face unfamiliar situations and unforeseen task requirements, and must be able to interact with users who possess diverse skill sets, backgrounds, and needs. Presently, robust, autonomous solutions for appropriately handling these vast possibilities and uncertainties are unattainable. End-user robot programming offers an alternative approach that lets end users provide task specifications and author robot skills to meet their own specific contextual constraints and needs. Our research has explored (1) how SARs can positively impact children’s learning by providing timely cognitive (HRI’17) and meta-cognitive (HRI’18) support and (2) how SARs can aid in behavioral intervention for children with Autism Spectrum Disorders (ASD) (Science Robotics).

Socially Assistive Robots (SAR) provide assistance through social, as opposed to physical, interactions. These robots have potential to provide cognitive, behavioral, and therapeutic support for people with diverse characteristics and needs. Our research has explored (1) how SARs can positively impact children’s learning by providing timely cognitive (HRI’17) and meta-cognitive (HRI’18) support and (2) how SARs can aid in behavioral intervention for children with Autism Spectrum Disorders (ASD) (Science Robotics).

Sponsor: This line of research is currently funded by the Malone Center for Engineering in Healthcare.
Photoacoustic Imaging and Fluorescence Imaging of Prostate-specific Membrane Antigen (PSMA) for Prostate Cancer Detection

PI: Emad Boctor

Medical Robots and Computer Integrated Interventional Systems

Accomplishment: One challenge for prostate cancer detection is to have both noninvasive and high-contrast imaging of deep prostate tissues. Photoacoustic (PA) imaging has been shown to be able to cater to this unmet need, meanwhile providing functional and quantitative information. We accomplished a system-level optimization of spectroscopic PA imaging for prostate cancer detection in three folds: system noise denoising, wavelength selection, and frame averaging. We also developed PSMA-targeted Poly(amidoamine) [PAMAM] dendrimers for real-time detection of PC using fluorescence (FL) and photoacoustic (PA) imaging.

Status: The system-level optimization framework is validated both in simulation and in vivo and showed the capability for more sensitive and faster prostate cancer detection. We also tested the contrast agent which showed superior in vivo target specificity in male NOD-SCID mice bearing isogenic PSMA+ PC3 PIP and PSMA- PC3 flu xenografts and suitable physicochemical properties for FL and PA imaging.

Funding: This work was funded by CA134675, CA184228, CA183031, EB024495, U.S. DoD CDMRP W81XWH-18-1-0188, the Commonwealth Foundation, and NIH Graduate Partnerships Program (GPP).

Key Personnel: Yixuan Wu, Jeeun Kang, Emad Boctor, Wojciech Lesniak, Martin Pomper

Publications:

For More Information: music.lcsr.jhu.edu/research/innovation-inspired-research and yixuanwu.page/research

Ultrasound Tomography for Prostate Cancer Imaging: An Ex Vivo Preliminary Study

PI: Emad Boctor

Medical Robots and Computer Integrated Interventional Systems

Accomplishment: With recent developments, state-of-the-art ultrasound tomography (UT) is now able to provide submillimeter-resolution imaging. Compared to conventional pulse-echo ultrasound (US) imaging, UT provides quantitative US transmission that characterizes speed of sound and constructs speckle-free, refraction-corrected 360-degree-compounded reflection images. Given the success of UT for accurately diagnosing breast cancers in patterns consistent with MRI, we sought to define feasibility of UT for prostate cancer imaging.

Status: In an initial series of 10 patients, blinded UT interpretation demonstrated equal or better sensitivity for detection of cancer compared with mpMRI, while mpMRI had slightly better specificity. Future work will assess these findings in a larger cohort, followed by in vivo studies with limited angle UT.

Key Personnel: Yixuan Wu, Emad Boctor, James Wiskin, Bradford Wood, Peter Pinto

Publications:

For More Information: music.lcsr.jhu.edu/research/innovation-inspired-research and yixuanwu.page/research
Real-Time Ultrasound/Photoacoustic Imaging Based Surgical Guidance System for Prostatectomy In Da Vinci Surgical Robot Environment

PI: Emad Boctor
Medical Robots and Computer Integrated Interventional Systems

Accomplishment: This project aims to minimize unwanted tissue damage during the robot-assisted laparoscopic prostatectomy. For instance, the peripheral nerve structures surrounding the prostate gland is hardly visible when the surgeon solely rely on the endoscopic camera view. The nerve damage during the surgery will cause significant post-operative complications such as erectile dysfunction or urinary incontinence. In order to address this problem, we propose to provide a real-time ultrasound/photoacoustic (US/PA) image guidance to functionally visualize the nerve structure as well as underlying tissue. The real-time US/PA images are provided based on the co-registration between the imaging device (i.e., Clinical ultrasound machine) and the endoscopic camera of the surgical robot (i.e., da Vinci). To minimize the complexity of the surgical environment (i.e., inside the abdomen), single optical fiber will be inserted to generate the PA source which will be used for both registration and imaging. Ultimately, the registered system will allow automatic servicing of the PA source by the ultrasound transducer to continuously monitor surgical spot during the procedure.

Status: The real-time US/PA image guidance system was developed and integrated into da Vinci SI surgical robot environment [1]. The developed system was demonstrated and validated with ex-vivo experimental setup, and achieved sub-centimeter accuracy in registration and tracking performance. In addition, PA imaging for nerve detection has been developed and validated with ex vivo nerve tissue as the proof-of-concept study [2].

Key Personnel: Hyunwoo Song, Emad Boctor

Volumetric Fetal Ultrasound Image Analysis for Standard Plane Localization

PI: Emad Boctor
Perception and Cognitive Systems

Accomplishment: Fetal biometry and anatomical survey are usually done by sonographers manually searching for a set of standard plane (SP) images using 2D ultrasound probe. This task is nontrivial because it requires high skills of hand-eye coordination for maneuvering the 2D ultrasound probe, which could be even more challenging when fetus is at unfavorable pose or mother exhibits a high body mass index (BMI). Therefore, we envisioned a portable 3D ultrasound device (‘patch’ device) that would help capture standard plane images from 3D volumes at home in challenging cases to avoid repetitive hospital visits. One of key steps toward this vision is a smart algorithm that can effectively extract standard plane views from the volumetric data for clinical measurements.

Status: We use a deep Q-network agent to model the process of iteratively searching for the target 2D view from a 3D volume. Given a random initial pose of the starting plane, the network is able to produce a 6-Degree-of-Freedom (DOF) discrete action that moves the plane one step closer to the target. Currently, the algorithm is validated with phantom experiment, which shows that the trained agent is able to correctly extract the target view image from a newly acquired 16cm depth large 3D ultrasound test volume within 150 action steps and achieve an average error of 5.53 mm and 2.26 deg, from different starting pose initializations.

Key Personnel: Baichuan Jiang, Keshuai Xu, Ernest Graham, Russell Taylor, Mathias Unberath, Emad Boctor
Fetal Ultrasound and Photoacoustic Monitoring with “Patch” Wearable Device

Pl: Emad Boctor

- Medical Robots and Computer Integrated Interventional Systems
- Perception and Cognitive Systems

Accomplishment: The project aims to develop an integrated solution for fetal monitoring during labor (and potentially during the whole pregnancy period). The specific medical condition we are targeting at is Hypoxic-Ischemic Encephalopathy (HIE), which is a type of severe brain dysfunction that cannot be effectively monitored by current technology. Therefore, we propose to use a wearable “patch”-like ultrasound device to do 3D ultrasound scans during labor, both locating the fetal brain and taking multi-parametric measures for fetal health. After locating the fetal brain, with the integrated light-delivery system, the “patch” device will take photoacoustic images of the fetal brain region to directly report the fetal brain oxygenation level or make instantaneous alarm to doctors.

Status: We first developed an algorithm to localize the fetal brain region within volumetric ultrasound data, which is also the algorithm we developed for standard plane localization task [1]. Next, we conducted in-vivo piglet experiments [2] to mimic the fetal brain environment and collected multi-wavelength photoacoustic images under different oxygenation conditions. A deep learning-based hypoxia detector is developed based on the in-vivo piglet data and demonstrates >90% sensitivity and specificity in this binary classification task [3,4].

Key Personnel: Baichuan Jiang, Jeeun Kang, Ernest Graham, Emad Boctor

Fully Non-contact Laser Ultrasound and Photoacoustic (ncLUS/PA) Imaging Device for Intra-operative Ultrasound Imaging

Pl: Emad Boctor

- Medical Robots and Computer Integrated Interventional Systems

Accomplishment: Over the decades, clinical ultrasound imaging device have acquired ultrasound image by using diagnostic ultrasound transducer that needs to be contacted to the skin surface for transparent acoustic coupling. Although the ultrasound imaging technology has been evolved significantly, such scanning method has limited the potential to be applied in various clinical applications. For instance, intra-operative ultrasound imaging is usually conducted by dropping the compact ultrasound transducer into the abdomen, and the surgeon manually manipulates the transducer to scan the region-of-interest. Here, the scanning procedure will significantly interrupt the surgical workflow by covering the surgical scene. In this project, we are going to develop a ultrasound imaging device that is fully non-contact, by using the state-of-the-art laser technology, where the excited laser will generate the photoacoustic effect on the tissue surface to propagate the acoustic wave, and the reflected acoustic wave will be detected by the laser interferometer. In order to provide the high resolution images in real-time, a GPU-powered system will process the advanced reconstruction technique (i.e., synthetic aperture focusing). In addition, the setup will also provide photoacoustic imaging by using the similar mechanism. We envision that the developed system will be culminated by being implemented in the robot-assisted surgical environment.

Status: The feasibility study of ncLUS imaging was conducted in simulation. Image reconstruction pipeline was developed with GPU-powered machine, and system optimization was designed and in progress. As a next step, a phantom experiment will be conducted for validation, and real-time imaging device will be implemented.

Key Personnel: Hyunwoo Song, Jeeun Kang, Emad Boctor
Wearable Ultrasound System for Lumbar Puncture Guidance

PI: Emad Boctor

Medical Robots and Computer Integrated Interventional Systems

Accomplishment: We developed a wearable ultrasound system to guide lumbar puncture in point-of-care settings. More than 400,000 lumbar punctures are performed annually, but nearly 23% fail, which leads to misdiagnoses, treatment delays, and complications. We designed a wearable scanner with an actuated phased array to interrogate the challenging complex bone structure with multiple insonification angles to reduce blind zones and allow real-time guidance during needle insertion. We developed AI algorithms to process the cluttered multi-angle ultrasound volume information into clean bone boundaries for visualization. In collaboration with Clear Guide Medical, we integrated tablet-based planning, needle tracking, and guidance technology. We also developed an augmented reality planning and real-time guidance application on HoloLens.

Status: We have working prototypes of the scanner, data processing pipeline, and guidance user interface. We have completed an animal cadaver study to evaluate the image quality, and user studies on phantoms to evaluate the overall navigation accuracy (publication under review). We are currently improving the image processing algorithm, and pursuing miniaturization in partnership with Analog Devices Inc.

Key Personnel: Keshuai Xu, Baichuan Jiang, Liam Wang, Emad Boctor, Peter Kazanzides

Vendor-independent Photoacoustic Vascular Access Guidance

PI: Emad Boctor

Medical Robots and Computer Integrated Interventional Systems

Accomplishment: We are developing a disposable intravenous (IV) needle that actively highlights the tip in ultrasound and characterizes the surrounding tissue. Vascular access is the most common medical procedure in the world. Over 350 million IV catheters are sold yearly. Peripheral IV often requires several attempts, which are painful and lead to complications. Visibility of the needle has been a major challenge in ultrasound-guided IV. We designed a guidance system that relies on a simple and low-cost needle with a piece of optical fiber inside the lumen to deliver light from a pulsed laser diode to the tip, which generates photoacoustic effect and announces its location. The signal from the needle can be both picked up by a probe attachment that is wirelessly synchronized with the needle, which localizes the tip and provides overlay on the screen.

Status: We have prototypes of the needle. We are working towards a complete system.

Key Personnel: Keshuai Xu, Jintan Zhang, Emad Boctor, Laeben Lester

Patents and Disclosures: US #11,229,418, "System for generating synthetic aperture ultrasound images during needle placement."

US #10,932,753, “Catheter ultrasound transmission element (CUTE) catheter.”

US #10,806,346, “Photoacoustic tracking and registration in interventional ultrasound.”

US#10,105,186, “Virtual rigid body optical tracking system and method.”

US #9,723,995, “Systems and methods for real-time tracking of photoacoustic sensing.”

US #9,636,083, “High quality closed-loop ultrasound imaging system.”
The Language of Surgery Project

PI: Gregory Hager

Human-Machine Collaborative Systems
Medical Robots and Computer Integrated Interventional Systems

Status: The Language of Surgery Project is focused upon methods to represent and model complex surgical performance data to support applications that improve surgical care and education. Since its inception in 2006, the Language of Surgery Project has fostered several interdisciplinary collaborations across the university, including with various divisions in the School of Medicine and departments in the Whiting School of Engineering. Ongoing research activities in the project include artificial intelligence tools for surgical performance improvement, methods to detect and address bias in video-based assessment of surgical skill, and objective assessment of context-specific surgical skill in nasal septoplasty.

Funding: Current and past sources supporting research in this project include:

- NSF (CPS 0931805, CDI 0941362, IIS 0534359; PI: Gregory Hager);
- NIH (1R01DE025265 and 5R21DE022656; PI: Masaru Ishii);
- Intuitive Surgical, Inc. (PIs: Gregory Hager, Austin Reiter);
- Wilmer Eye Institute Pooled Professors Fund (PI: Shameema Sikder);
- Johns Hopkins Science of Learning Institute (Co-PIs: Gregory Hager and Anand Malpani), and
- NIH (1R01EY033065; PI: Shameema Sikder and Swaroop Vedula)

Key Personnel:
- Whiting School of Engineering: Gregory Hager, Swaroop Vedula
- School of Medicine: Masaru Ishii, Shameema Sikder, Gina Adrales, Grace Chen
- Post Collaborators: Anand Malpani, Narges Ahmadi, Sarjeev Khudanpur, Rene Vidal, David Yuh, Steve Hsiao

The core research objectives for the Language of Surgery Project enable the following applications: automated recognition of surgical context including activity; objective assessment of surgical skill in the operating room and in simulation; automated targeted feedback for individualized learning; and human machine collaboration including automated coaching in surgical robotics. The eventual outcome these applications aims to improve safety and effectiveness of surgical care, and efficiency of surgical training.

For More Information: cirl.lcsr.jhu.edu/research/language-of-surgery-update

Automated Coaching in Surgical Robotics

Johns Hopkins Science of Learning Institute (Co-PIs: Gregory Hager and Anand Malpani), and
NIH (1R01EY033065; PI: Shameema Sikder and Swaroop Vedula)

Key Personnel:
- Whiting School of Engineering: Gregory Hager, Swaroop Vedula
- School of Medicine: Masaru Ishii, Shameema Sikder, Gina Adrales, Grace Chen
- Post Collaborators: Anand Malpani, Narges Ahmadi, Sarjeev Khudanpur, Rene Vidal, David Yuh, Steve Hsiao

The core research objectives for the Language of Surgery Project enable the following applications: automated recognition of surgical context including activity; objective assessment of surgical skill in the operating room and in simulation; automated targeted feedback for individualized learning; and human machine collaboration including automated coaching in surgical robotics. The eventual outcome these applications aims to improve safety and effectiveness of surgical care, and efficiency of surgical training.

For More Information: cirl.lcsr.jhu.edu/research/language-of-surgery-update

Machines with Imagination: Learning from Description through Synthesis and Analysis

PI: Gregory Hager

Perception and Cognitive Systems

Accomplishment: The DIVA (Deep Intermodal Video Analytics) project has fostered active collaborations with other institutions in the DIVA IARPA program, as well as the wider research community, yielding a visual data synthesis system capable of generating highly structured visual data at scale as well as a strong publication record in computer vision and machine learning.

Status: Funding: Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC00342; (PIs: Gregory Hager and Alan L. Yuille)

Key Personnel:
- From Computational Interaction and Robotics Laboratory: Gregory Hager (Principal Investigator), Tae Soo Kim (PhD Student), Michael Pevin (PhD Student), Jin Bai (PhD Student)
- From Computational Cognition, Vision and Learning: Alan L. Yuille (Principal Investigator), Weichao Qiu (PhD Student), Yi Zhang (PhD Student), Zihao Xiao (PhD Student)

The “DIVA” (Deep Intermodal Video Analytics) project is focused on developing an analysis-by-synthesis framework which takes advantage of state-of-the-art advancements both in graphical rendering engines and machine learning to create an intelligent system that can learn to recognize complex activities from descriptions. The core research objectives of the DIVA project span multiple disciplines in the field of computer vision and machine learning, including fine-grained activity recognition applied towards smarter video surveillance, 3D object pose estimation under severe visual conditions, and development of techniques for machine learning with data synthesis systems.

For More Information: cirl.lcsr.jhu.edu/deep-intermodal-video-analytics-diva-project

Figure 1: The proposed Analysis-by-Synthesis pipeline. Synthetic virtual world generates or “imagines” instances of activities given a semantic description. This is used to train discriminative models.
The central goal of this project is to design, develop, and evaluate a clinically compatible surgical platform for assisting ophthalmologists in providing therapy to the subretinal domain. Efficient, safe, reproducible delivery methods would enable stem cell, nanoparticle, and gene therapies for prevalent and incompletely treated ocular diseases, including but not limited to age-related macular degeneration (AMD). To achieve our goal we will: (1) design, construct, and evaluate a clinical-grade robotic assistant to enable precise tool manipulation for enhanced targeted delivery and properly orienting cells and genetic cargo in subretinal domains, thereby increasing their chances of survival in the target area. (2) develop methods utilizing real-time intraoperative 3D OCT images to detect and track previously invisible subretinal microstructural anatomy and to design optimized trajectories for safe and controlled subretinal injections to the target considering virtual fixtures to avoid dangerous motions; and (3) develop robot hybrid control algorithms and workflow for fusing OCT-based position-input virtual fixture with tool-tissue interactions to assist the surgeon with sensorimotor guidance toward safe robot-assisted subretinal stem cell injections.

Funding: NIH and JHU internal funds

For More Information: amiro.lcsr.jhu.edu/research

Status: Finalize the robotic system development (hardware and software) and run evaluation experiments. Develop real-time algorithms based on microscope-integrated intraoperative optical coherence tomography (iOCT) to provide enhanced visualization during surgery, segment retinal layers and surgical instruments, and estimate the distance between the tooltip of the surgical instruments and important retinal layers for subretinal injection. Develop hybrid control algorithms and workflow for fusing OCT-based position-input virtual fixture with tool-tissue interactions to assist the surgeon with sensorimotor guidance toward safe robot-assisted subretinal stem cell injections.

Funding: NIH, BWH, and JHU internal funds

For More Information: amiro.lcsr.jhu.edu/research

The central goal of this project is to overcome the issues of false-negative biopsies and suboptimal ablations caused by inaccurate needle placements in the context of prostate cancer management—a major healthcare problem in the U.S. To achieve our goal we will: (1) develop and validate an optimized sensorized needle with embedded FBG strain sensors with the objective to detect real-time deviation of the needle from the planned path within 1 mm; (2) develop and validate an adaptive needle guide with the sensorized needle to assist physicians in compensating for the needle deviation by continuously adjusting the needle guide and the bevel tip orientation during insertion to achieve a targeting accuracy of \(< 1.6 \) mm in a tissue-mimicking phantom; and (3) validate adaptive needle placement using the sensorized needle in vivo under MR guidance to test the hypothesis that the adaptive needle guide with the sensorized needle improves the needle placement accuracy and meets our accuracy requirement of \(< 1.6 \) mm in vivo.

Status: Develop and evaluate a new computational model for accurate needle shape-sensing and shape prediction during varying multi-layer insertions. Prototype, calibrate, and evaluate an FBG-based sensorized needle. Develop and evaluate a semi-automatic needle calibration platform for sensorized needles.

Funding: NIH, BWH, and JHU internal funds

For More Information: amiro.lcsr.jhu.edu/research
MRI Compatible Robot for Improved Pain Injections in Adults and Children

PI: Iulian Iordachita

Medical Robots and Computer Integrated Interventional Systems

The goal of this Bioengineering Research Grant is to develop and evaluate a patient-mounted MRI-compatible robot that allows for highly accurate needle placement while completely eliminating radiation exposure. The robot will serve as an enabling platform technology that can be applied to any needle-based MRI-guided interventions that require a high level of precision. In this project, we will develop and evaluate a body-mounted MRI-compatible robot for perineural injections used to treat pain in adult and pediatric patients. The robot will include active needle driving to enable real-time imaging of the path and needle tip as the needle is advanced via remote control.

Status: A 4-DOF needle positioning and orientation robot and a 2-DOF needle driver was developed and tested. A 3D slicer-based user interface to control the robot is under development.

Two cadaver experiments to evaluate the system in OR done so far.

Funding: NIH, Children’s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, and JHU internal funds

For More Information: amiro.lcsr.jhu.edu/research

Enabling Technology for Safe Robot-assisted Surgical Micromanipulation

PI: Iulian Iordachita

Medical Robots and Computer Integrated Interventional Systems

The central goal of this proposal is to develop and evaluate enabling technology for safe and reliable bilateral, semi-autonomous robotic assistance integrated with force sensing instruments that can measure tool-tissue interactions at the sclerotomy port and at the tool tip. The bilateral cooperative strategy will enable safe, precise, and coordinated manipulation of tools by employing hybrid force-position control strategies. The proposed bilateral system will enhance retina and sclera safety, increase the rate of retinal vein cannulation (RVC) success, diminish forces on the cannula and vein, reduce the human mental and physical requirements, and provides the surgeon with enhanced motion precision to enable more advanced surgical procedures using bilateral manipulation. To achieve our goal we will: (1) demonstrate coordinated position/force hybrid control algorithms for enabling real-time sensorimotor capabilities at sclerotomy for safe bilateral robot-assisted vitreoretinal microsurgery, (2) demonstrate position/force-input control algorithms for enabling real-time sensorimotor capabilities at the tool-tip for safe bilateral robot-assisted vein cannulation, and (3) demonstrate and evaluate bilateral RVC using steady-hand eye robot (SHER) in animal model in vivo.

Status: An automatic tool calibration procedure using SHER 2.1 and ROS-based software has been implemented and evaluated for force sensing ophthalmic tools. A hybrid force/position control method able to provide coordinated motions between the robotic assistants while enforcing tool motion constraints, such as maintaining the scleral forces below a predefined threshold or maintaining a safe tool tip distance from the retina has been developed and is under evaluation on cadaveric pig eyes.

Robust methods for robot-to-eyeball registration and robot control algorithms to identify the vessel puncture and force-input virtual fixture to control the tool-tip position and force and to prevent entry into subretinal areas during RVC have been implemented and evaluated in cadaveric pig eyes.

Funding: NIH and JHU internal funds

For more information: amiro.lcsr.jhu.edu/research
Anthropomorphically Driven Upper-Extremity Prosthesis

PI: Jeremy D. Brown

Bio-Robotics
Human-Machine Collaborative Systems

Accomplishment: We developed an anthropomorphically driven upper-extremity prosthesis that uses agonist/antagonist tendon actuation for bidirectional control of hand opening and closing and impedance control. The device also features an integrated haptic feedback system that provides wearers with real-time information regarding the tension in the tendon actuators.

Status: Details of the device and preliminary evaluation were published in the 2020 IEEE International Symposium on Medical Robotics (doi: 10.1109/ISMR48331.2020.9312933). We are now modifying the device to improve the haptic feedback system, as well as the prosthetic socket to support various forms of haptic feedback.

Funding: NSF CAREER Award

Key Personnel: Lorena Velásquez

Robot-Assisted Minimally Invasive Surgical Training

PI: Jeremy D. Brown

Bio-Robotics
Human-Machine Collaborative Systems
Medical Robots and Computer-Integrated Interventional Systems

Accomplishment: We conducted a user study comparing virtual reality and inanimate approaches to robot-assisted minimally invasive surgery training. Using a custom-developed needle-driving training task with inanimate and virtual analogs, we investigated the extent to which N=18 participants improved their skill on a given platform post-training, and transferred that skill to the opposite platform. Results indicate that the two approaches are not equivalent, with more salient skill transfer after inanimate training than virtual training.

Status: The findings have been published in the IEEE Transactions on Medical Robotics and Bionics (doi:10.1109/TMRB.2020.2990692)

Funding: Hopkins internal

Key Personnel: Guido Caccianiga, Gabriela Cantarero
Neuroergonomic Evaluation on Haptic Feedback in Upper-Extremity Prostheses

PI: Jeremy D. Brown

Bio-Robotics **Human-Machine Collaborative Systems**

Accomplishment: We conducted a user study to evaluate the impact of haptic feedback of grip force in an upper-extremity prosthesis from both a task performance and cognitive load perspective (using functional near-infrared spectroscopy). Utilizing fNIRS in a two-alternative forced-choice stiffness discrimination task, we asked participants to differentiate objects using their natural hand, a (traditional) myoelectric prosthesis without sensory feedback, and a myoelectric prosthesis with haptic (vibrotactile) feedback of grip force. Results showed that discrimination accuracy and mental effort are optimal with the natural hand, followed by the prosthesis featuring haptic feedback, and then the traditional prosthesis, particularly for objects whose stiffness was difficult to differentiate.

Status: The findings were recently published in the IEEE Transactions on Human Machine Systems (doi: 10.1109/THMS.2021.3066856).

Funding: Hopkins internal

Key Personnel: Neha Thomas, Hasan Ayaz

Sensorimotor-inspired Control for Upper-extremity Prostheses

PI: Jeremy D. Brown

Bio-Robotics **Human-Machine Collaborative Systems**

Accomplishment: To implement this system, we constructed two fabric-based tactile sensors that measure contact location along the palmar and dorsal sides of the prosthesis fingers and grasp pressure at the tip of the prosthesis thumb. We compared this novel system to a standard myoelectric prosthesis in a challenging reach-to-pick-and-place task conducted without direct vision; 17 non-amputee adults took part in this single-session between-subjects study. Participants in the sensorimotor control group achieved more consistent high performance compared to participants in the standard group. This system has been evaluated in two user studies.

Status: Our initial study evaluating this system was published in the 2021 IEEE International Conference on Intelligent Robots and Systems (IROS) (doi: 10.1109/IROS51168.2021.9635885) and demonstrated that the sensorimotor inspired system lead to more precise control compared to the standard prosthesis. We have published the results of a follow-up study in the IEEE Transactions on Neural Systems and Rehabilitation Engineering (doi: 10.1109/TNSRE.2022.3217452) that demonstrated improved task performance with the sensorimotor control approach over a standard prosthesis.

Funding: Hopkins internal, Fulbright Fellowship

Key Personnel: Neha Thomas, Katherine J. Kuchenbecker
Haptic Perception and Task Performance During Non-transparent Teleoperation

PI: Jeremy D. Brown

Accomplishment: We have developed a teleoperation testbed that allows for systematic investigations of human and robot dynamics on perceptual fidelity and task performance. This testbed utilizes a unique teleoperation design architecture that features modular dynamic transmissions between the leader and follower of the teleoperator to vary the energy exchange between body and environment.

Status: Details of the device and system evaluation were published in the 2021 IEEE International Conference on Intelligent Robots and Systems (doi: 10.1109/iros51168.2021.9636829)

Funding: NSF CISE Small

Key Personnel: Mohit Singhala, Jacob Carducci

Development of Nereid Under-ice (NUI): An Underwater Robot for Oceanographic Exploration Under Polar Ice

PI: Louis L. Whitcomb

Accomplishments and Status: The Nereid Under-Ice (NUI) vehicle is a lightly tethered hybrid AUV/ROV (HROV) developed by Woods Hole Oceanographic Institution and collaborator Louis Whitcomb at the Johns Hopkins University. Designed to be operated under fixed or moving ice, NUI is capable of standoff distances up to 20 km from the deployment vessel and is equipped with a navigation suite including LBL and OWTT acoustic packages, a FOG IMU, and a Doppler velocity log. McFarland et al. describe the ice-relative navigation algorithm as implemented during July 2014 operations at 83ºN 6ºW from icebreaker F/S Polarstern.

Key Personnel: Laughlin D. Barker, Michael V. Jakuba, Christopher R. German, Andrew D. Bowen, Louis L. Whitcomb

Collaborators: Antje Boetius, Christian Katlein, Stefanie Arndt, Mar Fernandez Mendez, Benjamin Lange, Marcel Nicolaus, Frank Weinzhofer, Larry Mayer, Kevin Hand, Andrew Branch, Steve Chien, Christopher McFarland

Funding: NSF Office of Polar Programs, James Family Foundation, George Fredrick Jewett Foundation East, Woods Hole Oceanographic Institution, NASA Astrobiology Program, NOAA OER, Chief Scientist Dr. Antje Boetius, Alfred Wegener Institute for Polar and Marine Research, and the officers, crew, and scientific research teams of PS 86 Expedition (2014) and PS 111 Expedition (2016).

Publications:

For More Information: whoi.edu/what-we-do/explore/underwater-vehicles/nereid-under-ice
Development of a Low-cost True-north Seeking Fiber Optic Gyrocompass for Precision Underwater Robot Navigation

PI: Louis L. Whitcomb

Key Personnel: Louis Whitcomb, Andrew Spielvogel, Abhimanyu Shah, Rachel Hegeman

Funding: NSF

Accomplishments and Status: This project seeks to develop a high-accuracy comparatively low-cost, compact, and low-power true-North seeking attitude (heading, pitch, and roll) sensor, and to incorporate this new instrument into a tightly integrated precision Doppler navigation system for UUVs. The goal is to develop a comparatively low-cost and high-accuracy navigation system to provide dramatically improved navigation accuracy for low-cost UUVs.

Our prototype instrument has been developed and tested on the lab bench. Our in-water laboratory tests are underway. The at-sea full-scale oceanographic testing was completed in 2018 and 2019.

Publications:

For More Information: dscl.lcsr.jhu.edu

Precision Navigation of Underwater Robotic Vehicles for Ocean Science

PI: Louis L. Whitcomb

Key Personnel: Louis L. Whitcomb, Annie Mao, James Hunt, Allan Elsberry, Zachary Harris, Andrew Spielvogel, Abhimanyu Shah

Funding: NSF

Accomplishments and Status: A novel class of small low-cost unmanned underwater vehicles (UUVs) is beginning to perform oceanographic, environmental assessment, and national security missions that are faster and less expensive than previous methods such as large high-cost UUVs, human-piloted vehicles, and human divers. A significant limitation of small low-cost UUVs is their low-cost navigation systems, which presently limit them to missions requiring comparatively low-precision navigation. This project developed new methods for high-accuracy navigation with low-cost sensors to provide dramatically improved navigation accuracy for low-cost UUVs.

We have (1) employed Doppler sonar velocity measurement and low-cost low-power inertial measurement units to estimate attitude; (2) developed nonlinear model-based state estimators employing a full nonlinear model of the vehicle’s second-order plant dynamics, and (3) developed underwater acoustic modem networks to provide simultaneous acoustic communication and acoustic range and range-rate data, and employ these data for improved underwater vehicle navigation.

Publications:

For More Information: dscl.lcsr.jhu.edu
Robotic Environmental Sampling
PI: Marin Kobilarov
- Modeling, Dynamics, Navigation, and Control
- Robotics in Extreme Environments

Accomplishments and Status: Demonstrated adaptive sampling with underwater vehicles to build informative models of dissolved oxygen in the Chesapeake Bay. As a result, the development and spread of hypoxia (oxygen depletion) could be identified and tracked more accurately than current methods with fixed stations or ship-based sampling.

Funding: USDA NIFA
Key Personnel: Paul Stankiewicz, William Tan, William Ball, Marin Kobilarov
For More Information: asco.lcsr.jhu.edu

Autonomous Aerial Manipulation
PI: Marin Kobilarov
- Modeling, Dynamics, Navigation, and Control
- Robotics in Extreme Environments

Accomplishment: The project introduced a novel, small form-factor, aerial vehicle research platform for agile object detection, classification, tracking, and interaction tasks. We engineered this platform to maximize safety and reliability, with a custom collision tolerant cage and simple gripper for object grasping. Small vehicles enable applications in highly constrained environments, but are often limited by computational resources. This work demonstrates experiments of pick-and-place tasks, with entirely onboard computation of object pose and visual odometry based vehicle state estimation, with enough accuracy to reliably grasp small objects. In a total of 70 trials across challenging cases such as cluttered environments, obstructed targets, and multiple instances of the same target, we demonstrated successfully grasping the target in 93% of trials.

Key Personnel: Cora A. Dimmig, Gabriel Baraban, Anna Goodridge, Pupei Zhu, Joyraj Bhoseick, and Marin Kobilarov
Funding: NSF
Status: Active
For More Information: asco.lcsr.jhu.edu

Hypoxia detection in the Chesapeake Bay
- real-time water quality sensing: dissolved oxygen and nitrates
- information-maximizing intelligent sampling
- autonomous navigation to next-best sample location

For More Information: asco.lcsr.jhu.edu
Autonomously Navigating a Surgical Tool Inside the Eye by Learning from Demonstration

PI: Marin Kobilarov
Medical Robots and Computer Integrated Interventional Systems

Accomplishment: Developed a system for vision-based autonomous navigation of a micro-manipulator needle to a surgeon-specified goal location on the retina of the eye, using visual feedback supervised learning. Demonstrated vein cannulation using developed system and model-predictive-control, in eye phantoms and cadaveric porcine eyes.

Key Personnel: Ji Woong (Brian) Kim, Peyiao Zhang, Peter Gehlbach, Iulian Iordachita, Marin Kobilarov

For More Information mkobila@jhu.edu

Task-aware and Autonomous C-arm Imaging

PI: Mathias Unberath
Human-Machine Collaborative Systems
Medical Robots and Computer Integrated Interventional Systems
Perception and Cognitive Systems

Accomplishment: C-arm X-ray systems are the workhorse modality for numerous percutaneous procedures across diverse clinical disciplines, enabling more than 17 million interventions during 2006 in the United States alone. This number is projected to further increase, creating a global market of US $3 billion for C-arm X-ray systems by 2023. Use of these systems interventionally, however, requires highly trained surgeons and C-arm technologists, since the software back-end driving these systems is still task-agnostic: The modality has no notion of anatomy, procedural progress, or desired information, effectively degrading even most modern C-arm systems to “medical grade cameras.” Surgeons and technologists must actively steer the C-arm to achieve and reproduce radiographs from multiple, well-defined viewpoints to infer procedural progress. This great responsibility is associated with excessive radiation dose to patient and staff, high procedure times, repeat attempts, and—in the worst-case scenarios—adverse outcomes.

A task-aware robotic C-arm system that autonomously acquires and interprets fluoroscopic images best suited for decision making on a patient-specific basis can significantly reduce radiation dose and procedure time, and thus, improve outcome by decreasing the risk for morbidity and mortality. The major obstacle hindering the introduction of autonomous, task-aware imaging modalities is the development of appropriate machine intelligence, the innovation of which becomes possible through novel approaches by ourselves and colleagues that enable machine learning for X-ray-based interventions.

Funding: R21 Trailblazer

Key Personnel: Mathias Unberath, Benjamin Killeen

Patents and Disclosures Task-aware and Anatomy-specific Cone-beam Computed Tomography. U.S. Provisional Application Serial No. 62/896,352
3D Reconstruction of Sinus Anatomy from Monocular Endoscopic Video Using Self-supervised Learning

PIs: Mathias Unberath, Russell Taylor, Greg Hager

Medical Robots and Computer Integrated Interventional Systems
Perception and Cognitive Systems

Accomplishment: Minimally invasive procedures in the head and neck typically employ surgical navigation systems to provide surgeons with additional anatomical and positional information to avoid critical structures. Computer vision-based navigation systems that rely on the intra-operative endoscopic video stream and do not introduce additional hardware are both easy to integrate into clinical workflow and cost-effective, but require registration of pre-operative data, such as CT scans, to the intra-operative videos. For 3D-to-3D registration algorithms, estimating an accurate and dense intra-operative 3D reconstruction is necessary to ensure acceptable performance of the system. However, obtaining such reconstructions is not trivial, due to problems such as texture less surface, specular reflectance, lack of photometric constancy across frames, and tissue deformation. Several methods have been explored for 3D reconstruction in endoscopy. Multi-view stereo methods, such as Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM), are able to reconstruct 3D structure and estimate camera poses in feature-rich scenes. However, the paucity of features in endoscopic images can cause these methods to produce sparse and unevenly distributed reconstructions, which may lead to inaccurate registration. We research learning-based approaches to 1) identify corresponding points across multiple frames of endoscopic video sequences, 2) use this information to derive sparse reconstructions and relative camera motion that enable the training of deep convolutional neural networks for monocular depth estimation, and 3) fuse monocular depth estimates via the relative camera poses into a volumetric 3D reconstruction of sinus endoscopy with large anatomical coverage. This approach results in sub-millimeter registration errors between endoscopic video and pre-operative CT scans.

Funding: This work was funded in part by NIH R01-EB015530, in part by a research contract from Galen Robotics, in part by a fellowship grant from Intuitive Surgical, and in part by Johns Hopkins University internal funds.

Key Personnel: Xingtong Liu, Ayushi Sinha, Mathias Unberath, Masaru Ishii, Gregory D. Hager, Russell H. Taylor
For More Information: arcade.cs.jhu.edu/research

Human-centered design stages for transparent ML

Accomplishment: Transparency in machine learning, including interpretable or explainable machine learning, attempts to reveal the working mechanisms of complex models, including deep neural networks. Transparent machine learning promises to advance the human factors engineering goals of human-centered AI, such as increasing trust or reducing automation bias, in the target users. We study human-AI interaction and advance the possibilities of transparent model design to develop systems that afford transparency for their envisioned end users and capitalize on the benefits of transparent machine learning.

Funding: Various sources
Key Personnel: Mathias Unberath, Catalina Gomez, Haomin Chen
For More Information: arcade.cs.jhu.edu/research
SyntheX: Scaling Up Learning-based X-ray Image Analysis Through in Silico Experiments

PI: Mathias Unberath

Medical Robots and Computer Integrated Interventional Systems

Modeling, Dynamics, Navigation, and Control

Perception and Cognitive Systems

Accomplishment: In this line of work, we advance X-ray and procedural simulation methods from human-based models together with domain transfer techniques to achieve feasible solutions for training AI algorithms on synthetic data while preserving their performance under domain shift for evaluation and deployment in the real world. The SyntheX simulation paradigm allows us to develop learning-based image analysis algorithms for novel procedures or robot mediated workflows, data of which would not otherwise be created.

Key Personnel: Mathias Unberath, Benjamin Killeen, Cong Gao

For More Information: arcade.cs.jhu.edu/research

Mixed Reality for Surgical Guidance

PI: Mathias Unberath

Medical Robots and Computer Integrated Interventional Systems

Perception and Cognitive Systems

Accomplishment: Augmented and mixed reality headsets combined with powerful computer vision algorithms emerge as powerful systems to achieve high-precision surgery without the need for costly surgical navigation hardware. We advance computer vision techniques and study human perception to develop novel mixed reality solutions that can meet the strict requirements of precision surgery tasks.

Funding: Among others: Arthrex Inc. Sponsored Research Agreement

Key Personnel: Mathias Unberath, Wenhao Gu, Zhaoshuo Max Li, Sue Min Cho

For More Information: arcade.cs.jhu.edu/research
We are developing a suite of surgical tools for minimally invasive robotic surgery of the hip, knee, and spine using a continuum manipulator. Our system is capable of autonomous, robot-assisted, and hand-held operation, allowing for the surgeon to configure the system to optimize for time, cost, and safety.

Status: We have successfully demonstrated autonomous treatment of osteolysis using feedback from an FBG sensor, as well as stable operation of the CDM for hand-held milling and drilling.

Funding: NIH/NIBIB R01EB016703, NIH/NIAMS R01AR08315 and CUHK-MRC/JHU-LCSR collaboration

Key Personnel: Justin Ma, Henry Phalen, Golchehr Amirkhani, Joshua Liu, Amit Jain (MD), Julius Oni (MD), Russell Taylor, Mehran Armand, Alejandro Martin-Gomez, Ping-Cheng Ku, Mingxi Liu, Wenpeng Wang, Yaqian Chen, and David Usevitch

For more information: bigss.lcsr.jhu.edu

Perceptual Visualization for Surgical Guidance in Orthopaedics Using Augmented Reality

PI: Mehran Armand, Alejandro Martin-Gomez

Accomplishment: In-situ visualization of anatomical content using augmented reality (AR) has proven to be challenging. Perceptual issues, such as inconsistent occlusion when using AR head-mounted displays frequently lead to perceiving the virtual content floating on top of the real objects. Visualization techniques such as “Focus and Context” enable the visualization of virtual content placed inside real objects. This project aims to enable visual guidance during the performance of orthopedic surgical procedures using AR head-mounted displays.

Status: An initial implementation of the visualization techniques has been designed and is ready to be implemented. Future steps include the integration and validation of the visualization techniques under controlled scenarios and surgical environments.

Funding: R01EB017703 and R01AR080315

Key Personnel: Alejandro Martin Gomez, Nassir Navab, Mehran Armand

For More Information: bigss.lcsr.jhu.edu

End-to-End Augmented Reality Framework for In-situ Visualization in Surgical Scenarios

- Visualizing anatomical structures inside a patient's body using augmented reality has proven a challenging task.
- Misleading visual cues can lead to perceive the virtual content floating on top of the body.
- This project integrates visualization techniques that improve the perception of the virtual content by occluding the real objects.

- Our goal is to integrate augmented reality head-mounted displays to provide visual guidance during orthopedical surgical procedures.

Copyright © 2022

Patents and Disclosures

- 10/29/2020
Accomplishment: As many as 1 million people in the United States have melanoma. Based on current recommendations, survivors of the disease and their close family (approximately 4 million in the U.S.) should be followed up annually. In recent years, the state-of-the-art 3D total body photography systems have been able to document the anatomical location of lesions. However, due to the existing systems’ lack of resolution, the clinicians still have to rely on capturing dermatoscopic images for “sequential digital dermoscopic imaging” (SDDI).

We are developing a total body dermatological examination assistive device capable of detecting substantive changes to the skin lesions between successive examinations, regardless of changes to the body and pose of the subject.

Status: Prototype device and software have been developed and installed at JHU Outpatient Center for a soon-to-begin 100-patient study.

Funding: NSF and NIH STTRs and NIH GPP

Key Personnel: Wei-lun Huang, Ping-Cheng Ku, Minghao Xue, Nassir Navab, Davood Tashayyod, Jun Kang (MD), Mehran Armand

For More Information: bigss.lcsr.jhu.edu

Accomplishments: Conventional cranial implant placement using cranial implants is performed in two stages and/or involves imprecise and time-consuming manual implant modifications. The manual manipulations are imprecise and may result in large bone gaps and implant failure with post-surgical complications. We propose computer-aided and robotic techniques for a single-stage cranioplasty with customized implants. In the single-stage cranioplasty, skull resection and implant resizing will happen within a single surgery. We have automated this process to achieve faster and more precise implant rezing. Three major systems have been developed: 1) a Portable Projection Mapping Device; 2) a Robotic Implant Modification Platform; and 3) a 5-Axis Laser Cutting Machine. Using a high-resolution 3D scanner to acquire the geometry of a patient’s defect. We then register the geometry to the preoperative implant design using CT data and generating a cutting toolpath. The robot or the customized 3D laser machine will then cut the implant automatically.

Status: Our evaluation showed that systems can achieve faster and more precise implant modification for single-stage cranioplasty.

Funding: JHU/APL, Cohen grant

Key Personnel: Joshua Liu, Wei-Lun Huang, and Chad Gordon, Mehran Armand

For More Information: bigss.lcsr.jhu.edu
Robot-assisted Femoroplasty

PI: Mehran Armand

Accomplishments: We have developed robot-assisted system for femoral bone augmentation surgery that implements the concept of intraoperative biomechanical feedback. The system consists of surgical biomechanical planning using hydrodynamics-based bone cement diffusion model, surgical navigation involving 2D/3D registration of preoperative CT scans to the augmented hip bone via acquiring X-ray images, real-time tracking, and an intraoperative monitoring system of the cement shape from X-ray images. Current system advancements include designing a drilling and injection component (DI) capable of both bone drilling and controlled injection of the cement, that is attached to the six DOF positioning robot (UR10, Universal Robots Inc.). We evaluated the feasibility of the robotic system with the use of image-based 2D/3D registration through a cadaveric experiment involving soft tissue. Intraoperative fluoroscopic images are taken from multiple views to perform registration of the femur and DI. Our evaluation showed the superior accuracy and reliability of image-based, robot-assisted bone augmentation. We have also modified a planning paradigm for femur augmentation to lower the injection volume as compared to the previous work. This will likely reduce the risk of thermal necrosis caused by exothermic polymerization of PMMA.

Status: Application demos for treatment of femoroplasty; prototype drilling and injection component exist; integrating robotic system components for OR application and cadaver studies; designing animal study for investigating the safety of the procedure

Funding: NIH/NIBIB, R01EB023939

Key Personnel: Mahsan Bakhtiarinejad, Mathias Unberath, Russell Taylor, Simon Mears, Julius Oni, Mehran Armand

For More Information: bigss.lcsr.jhu.edu

Robot-assisted Transcranial Magnetic Stimulation

PI: Mehran Armand

Accomplishment: Transcranial magnetic stimulation (TMS) is a noninvasive and painless procedure that utilizes magnetic fields to temporarily stimulate or inhibit nerve cell activities in a target area. The stimulation improves symptoms of depression, and the inhibition can be used in brain mapping research. In the conventional manual method, the operator needs to place the TMS coil to the correct location and orientation using a navigation system. We use a robotic system to improve the placement accuracy and repeatability. In addition, using a projection mapping system, we overlay the target TMS point and underlying brain anatomy to the head of the subject.

Status: An initial implementation including integrated navigation system, projection mapping system, robot position control has been completed.

Funding: NIH: R01DC018815

Key Personnel: Yiohao Liu, Joshua Liu, Jeremy Zhang, Jing Tian (MD), Amir Kheradmand (MD), Mehran Armand

For More Information: bigss.lcsr.jhu.edu
Deep Learning Approach to Photoacoustic Visual Servoing

PI: Muyinatu Bell

Medical Robots and Computer Integrated Interventional Systems

Perception and Cognitive Systems

Accomplishment: We developed a real-time, photoacoustic visual servoing system that processes information directly from raw acoustic sensor data without requiring image formation or segmentation in order to make robot path planning decisions to track and maintain visualization of tool tips, which is an essential component of multiple robotic surgical and interventional procedures.

Status: This work was presented at the 2021 IEEE International Conference on Robotics and Automation.

Funding: This work is supported by NSF Smart and Connected Health Award IIS-2014088, NIH Trailblazer Award R21 EB025621, and NSF CAREER Award ECCS-1751522.

Key Personnel: Mardava R. Gubbi, Muyinatu Bell, PhD

Patents and Disclosures: Citation: Gubbi MR, Bell MAL, Deep Learning-Based Photoacoustic Visual Servoing: Using Outputs from Raw Sensor Data as Inputs to a Robot Controller, IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, May 30–June 5, 2021.

For More Information: pulselab.jhu.edu/wp-content/uploads/2021/03/Gubbi_Bell_ICRA_2021.pdf

Photoacoustic-guided Hysterectomy

PI: Muyinatu Bell

Medical Robots and Computer Integrated Interventional Systems

Perception and Cognitive Systems

Accomplishment: This work is the first to demonstrate a novel method for photoacoustic image-guided hysterectomies within the realistic imaging environment of a human cadaver during both open and laparoscopic procedures. With a contrast agent injected into the ureter, two laser wavelengths can be used to create a simultaneous display of the ureter and the uterine artery. This dual-wavelength approach was then integrated to create a novel surgical guidance system by estimating the tool-to-ureter distance and mapping that distance to an audible signal, similar to the parking sensor on a modern automobile. This auditory signal is intended to alert surgeons who are operating too closely to the ureter, which can lead to multiple life-threatening complications caused by accidental injury to the ureter during surgery.

Status: A journal paper describing this contribution was recently published in IEEE Transactions on Medical Imaging.

Funding: This work was supported by a Johns Hopkins Discovery Award and NSF CAREER Award (Grant No. ECCS-1751522).

Key Personnel: Alycen Wiacek, Karen Wang, MD, Harold Wu, MD, Muyinatu Bell, PhD

Citation: Wiacek A, Wang KC, Wu H, Bell MAL, “Photoacoustic-Guided Laparoscopic and Open Hysterectomy Procedures Demonstrated with Human Cadavers,” IEEE Transactions on Medical Imaging, 40(12):3279–3292, 2021. The authors additionally thank John Thate and Karl Storz Endoskope for the generous use of their laparoscopic equipment; Michelle Graham and Eduardo Gonzalez for their assistance during the cadaver studies; and the Johns Hopkins Carnegie Center for Surgical Innovation for infrastructure support.

For More Information: ieeexplore.ieee.org/document/9438623
Deep Learning COVID-19 Features in Lung Ultrasound Images

Pi: Muyinatu Bell

Perception and Cognitive Systems

Accomplishment: We are developing a deep learning approach to detect COVID-19 features in lung ultrasound images. Deep neural networks were trained with simulated ultrasound data and tested on 51 in vivo B-mode images from COVID-19 patients. Our networks achieved 86% accuracy to detect the same (55% of cases) or more (45% of cases) B-lines than human observers. This work is beneficial for assisting less experienced physicians with identifying B-line features for COVID-19 detection and diagnosis.

Status: This work was accepted for presentation at the 2022 SPIE Medical Imaging Conference and the 2022 IEEE International Ultrasonics Symposium.

Funding: This work was supported by the Computational Sensing and Medical Robotics Research Experience for Undergraduates Program (Grant No. EEC 1852155), the NIH Trailblazer Award (Grant No. R21-EB025621), and the NIH Trailblazer Award Supplement (Grant No. R21-EB025621-035).

Key Personnel: Benjamin Frey, Lingyi Zhao, PhD, Tiffany Fong, MD, Muyinatu Bell, PhD

Citations:

- Benjamin Frey, Lingyi Zhao, Muyinatu Bell, "Multi-Stage Investigation of Deep Neural Networks for COVID-19 B-line Feature Detection in Simulated and In Vivo Lung Ultrasound Images," SPIE Medical Imaging, 2022

Non-egocentric Viewpoints for Scene Understanding Using Augmented Reality

Pi: Alejandro Martin Gomez

Human-Machine Collaborative Systems

Medical Robots and Computer Integrated Interventional Systems

Perception and Cognitive Systems

Accomplishment: 2 Papers Accepted at 2020 IEEE International Symposium on Mixed and Augmented Reality, and 1 Paper Accepted at 2020 IEEE Robotics and Automation Letters.

The misestimation of depth is a recurrent problem commonly observed in egocentric Augmented Reality (AR) applications. Providing alternative views from non-egocentric perspectives, using external cameras or mirrors, has shown beneficial in supporting users of this technology to convey additional information from the scene. This information is valuable for use cases that require the correct judgment of depth, as it is in the case of object placement and alignment, as well as for exploration and visualization tasks. The development of novel concepts such as the Reflective AR-Displays and Augmented Mirrors provides these valuable viewpoints while simultaneously allowing the users to observe the real and virtual content of an Augmented Reality scene.

The Reflective AR-Displays

Provide dynamic mirror-like visualizations of the augmented content using images collected from multiple viewpoints.

The Augmented Mirrors

Integrate real mirrors into mixed-reality environments to dynamically- and simultaneously-reflect the real and virtual content of the scene.

Status: Concept design and demonstration of potential use cases of the technology in industrial and medical scenarios.

Key Personnel: Alejandro Martin Gomez, Nassir Navab, Mehran Armand, Greg Diggod, Alex Johnson

For More Information medicalaugmentedreality.org
Repurposing the Built-in Sensors of Augmented Reality Head-mounted Displays

PI: Alejandro Martin Gomez

Accomplishment: Augmented Reality is an emerging technology that has shown benefits in assisting surgeons during the performance of surgical procedures. The introduction of Head-Mounted Displays has allowed for the presentation of virtual content superimposed within the surgeon’s visual field, facilitating their use for medical imaging visualization in-situ and navigation purposes. These devices are frequently equipped with various sensors that allow for self-localization, hand tracking, eye tracking, or depth estimation. This project aims to enhance the surgeon’s capabilities inside the operating room further by repurposing these sensors and expanding their functionalities.

Status: As part of this project, we have developed a framework that uses the built-in cameras of commercially available Augmented Reality Head-Mounted Displays to enable accurate tracking of the retro-reflective markers commonly used to track tools during surgical procedures. This framework provides comparable accuracy to the medical-grade tracking systems used inside the operating room.

Key Personnel: Alejandro Martin Gomez, Mehran Armand

Interactive Flying Frustums

PI: Nassir Navab, Alejandro Martin-Gomez

Accomplishment: IEEE Transactions on Medical Imaging 2020

Development and Pre-Clinical Analysis of Spatiotemporal-Aware Augmented Reality in Orthopedic Interventions

Status: Full pre-clinical user study in collaboration with Greg Osgood and Alex Johnson from Johns Hopkins School of Medicine.

Funding: Internal

Key Personnel: Nassir Navab, Alejandro Martin Gomez, Greg Osgood, Mehran Armand, Alex Johnson

For More Information: medicalaugmentedreality.org/camc.html
iOCT-guided Robot-assisted Sub Retinal Injection

PI: Nassir Navab, Alejandro Martin Gomez

Human-Machine Collaborative Systems
Medical Robots and Computer Integrated Interventional Systems
Perception and Cognitive Systems

Accomplishment: Biomedical Optics Express 2021 Real-Time Tool to Layer Distance Estimation for Robotic Subretinal Injection using Intraoperative 4D OCT

IEEE International Conference on Robotics and Automation 2022 (Submitted)

Towards Autonomous Subretinal Injections: OCT Guided Robotic Injection System

Status: Design and evaluation of an algorithm to estimate the distance between an injection needle and the surface boundaries of retinal layers from iOCT volumes.

Preliminary evaluation of a framework to plan and select targets in OCT volumes and to control a surgical robot to reach the desired targets.

Funding: R01 NIH

Key Personnel: Nassir Navab, Alejandro Martin Gomez, Iulian Iordachita, Peter Gehlbach

For More Information: osapublishing.org/boe/fulltext.cfm?uri=boe-12-2-1085&id=446953

Human Sensory-motor Control

PI: Noah J. Cowan

Human Sensory-motor Control
Bio-Robotics
Modeling, Dynamics, Navigation, and Control
Perception and Cognitive Systems

Accomplishment: Understanding how animals, including humans, plan and conduct movements—and how those movements are impaired by neurodegenerative diseases—remains one of the grand challenges of neuroscience and medicine. We are addressing this challenge by performing human motor control experiments in healthy individuals and those with neural disorders through a COVID-19 conscious, ship-to-home VR-based motion tracking system. Specifically, the goal of our study is 1) to identify the motor control deficits that result from damage to the cerebellum and 2) to design compensation methods for these deficits to help improve the control performance in people with cerebellar ataxia.

Status: During the pandemic, we developed and deployed the VR-based system in collaboration with our colleagues at JHU (Bastian lab) and performed extensive human subjects experiments in both healthy participants and those with cerebellar ataxia. We identified the cerebellar contribution to human feedforward and feedback control pathways, and we are further utilizing these mechanisms to design some solutions to improve people’s movement control. We are currently preparing the work for publication. We have also developed, in collaboration with researchers at the University of Michigan, a theoretical understanding of how individuals manage long-latency feedback, and we are making progress in understanding how that capability is impaired for ataxic individuals. We are currently preparing the work for publication.

Funding: This work is supported by a collaborative National Science Foundation (NSF) Award to Noah Cowan, James Freudenberg, Brent Gillespie, and Amy Bastian (1825489).

Key Personnel: Noah Cowan, Di Cao, Michael GT Wilkinson, Amy Bastian, Jim Freudenberg, and Brent Gillespie

We observed that the fish’s velocity distributions were varying visual salience. Across experimental conditions, performed station keeping within a stationary shuttle while 100 101

Behaviors across species. These active, exploratory movements for a wide range of that captures the temporal and statistical structure of 4 hypotheses, new data, and a new control theory model for over 50 years. Our present study describes a new open question in the field of sensorimotor research energetically costly ancillary movements remained an weakly electric fish (Eigenmannia virescens) increase production of ancillary fore-and-aft movements while performing a refuge-tracking behavior in experiments with decreased visual salience. The structure of these energetically costly ancillary movements remained an open question in the field of sensorimotor research for over 50 years. Our present study describes a new hypothesis, new data, and a new control theory model that captures the temporal and statistical structure of these active, exploratory movements for a wide range of behaviors across species. Status: We tracked the position of Eigenmannia as they performed station keeping within a stationary shuttle while varying visual salience. Across experimental conditions, we observed that the fish’s velocity distributions were non-Gaussian (with a distinct sharp peak at the center and broad shoulders on the sides) indicating a mode-switching strategy being employed by the fish. Interestingly, the time scales of the switching between these modes were modulated by the sensory salience (lights on/off). Reanalysis of published data from a wide range of motor behaviors from nine different species (5 vertebrates and 4 invertebrates) revealed a strikingly conserved mode-switching strategy that is shared across taxa, suggesting a widespread evolutionary convergence. We also proposed an ad hoc state-uncertainty-based computational algorithm that reproduces the essential features of the experimental data. Funding: This work was supported by Office of Naval Research (N00014-21-1-2431) to Noah J. Cowan Key Personnel: Noah J. Cowan, Debojyoti Biswas, Yu Yang, Andrew Lamperski, Kathleen Hoffman, John Guckenheimer, Eric S. Fortune.

Accomplishment: Animals across taxa deploy complex patterns of movement both for achieving behavioral tasks and for sensing. These movements are actively modulated by the strength of sensory information. For example, weakly electric fish (Eigenmannia virescens) increase production of ancillary fore-and-aft movements while performing a refuge-tracking behavior in experiments with decreased visual salience. The structure of these energetically costly ancillary movements remained an open question in the field of sensorimotor research for over 50 years. Our present study describes a new hypothesis, new data, and a new control theory model that captures the temporal and statistical structure of these active, exploratory movements for a wide range of behaviors across species. Status: We tracked the position of Eigenmannia as they performed station keeping within a stationary shuttle while varying visual salience. Across experimental conditions, we observed that the fish’s velocity distributions were non-Gaussian (with a distinct sharp peak at the center and broad shoulders on the sides) indicating a mode-switching strategy being employed by the fish. Interestingly, the time scales of the switching between these modes were modulated by the sensory salience (lights on/off). Reanalysis of published data from a wide range of motor behaviors from nine different species (5 vertebrates and 4 invertebrates) revealed a strikingly conserved mode-switching strategy that is shared across taxa, suggesting a widespread evolutionary convergence. We also proposed an ad hoc state-uncertainty-based computational algorithm that reproduces the essential features of the experimental data. Funding: This work was supported by Office of Naval Research (N00014-21-1-2431) to Noah J. Cowan Key Personnel: Noah J. Cowan, Debojyoti Biswas, Yu Yang, Andrew Lamperski, Kathleen Hoffman, John Guckenheimer, Eric S. Fortune.

Accomplishment: Animals routinely learn to compensate for novel sensorimotor feedback. For instance, insects can adjust to limb amputation, antenna trimmed, or wing damage caused by predations or collisions. Humans are able to learn novel tasks like walking on split-belt treadmills and riding a bicycle. Prior studies have revealed mechanisms and strategies of animals learning to compensate these effects in locomotion and motor learning. We here take the next step to understand how the brain of weakly electric fish Eigenmannia virescens learns to compensate for novel, destabilizing dynamics, and how the updated controllers impact system level performance. It garners new insights into comparative motor learning in a system with a well-characterized, experimentally verified locomotor dynamics.

Status: Publication in preparation.

Funding: This work is supported by a collaborative Office of Naval Research (ONR) grant to Noah J. Cowan (N00014-21-1-2433), Rene Vidal, Mario Sznaier (PI), Octavia Camps, Milad Siami, Eduardo Sontag, Peter Bartlett, and Necmiye Ozay.

Key Personnel: Noah Cowan, Yu Yang, Dominic Yared

For More Information: xcdsystem.com/sicb/program/5X09IBU/index.cfm?pgid=377&printmode=1&sid=91652&abid=33035
Hippocampal Place Cell Encoding During Gap-crossing Behaviors

PI: Noah J. Cowan
Bio-Robotics
Modeling, Dynamics, Navigation, and Control
Perception and Cognitive Systems

Accomplishment: In this project, we are studying rats that are trained to run across a linear track with an adjustable gap in the middle. To cross the gap, rats must decide to either jump over the gap (jumping) or jump into and out of the gap (ditching) to get to a reward on the other side. The decision is completely voluntary, but the gap length is changed during the experiment to keep both decision outcomes similarly likely and encourage decision making. We want to understand how rats perform decision-making and path-planning during such behaviors. The hippocampus is part of the brain that is believed to play a major role in these cognitive functions. Because of this, we are interested in how cells in the hippocampus fire while the animals are crossing the gap. We are particularly interested in the activity of hippocampal “place cells,” which are cells that fire when an animal occupies a specific space in their environment.

Status: In our experiments, we have seen that place cells in rats also encode spaces where the whole body of the animal is completely midair during a jump. We have also observed that place cells discriminate between trajectories taken between jumping and ditching, even though they have similar 2D projections onto the horizontal plane. Therefore, place cells encode complex navigation on different 3D paths. Additionally, place cells encode based on the action of an animal. For instance, after jumping, place cells fire at the landing site on the other side of the track. Most of these cells will not fire (or fire at a significantly lower firing rate) when the animal reaches the same location after ditching. A similar phenomenon happens for ditching: place cells fire after ditching but are silent after jumping. Thus, our results suggest that the coding of the place cells is action-dependent.

Funding: This work is supported by an Army Research Office Multidisciplinary University Research Initiative (MURI) Program Award W911NF1810327 (N.J.C., J.J.K.)

Key Personnel: Shahin Lashkari, Brian Woronowicz, Murtaza Hathiyari, James J. Knierim, Noah J. Cowan

Programming Thermobiochemomechanical (TBCM) Multiplex Robot Gels

PI: Noah J. Cowan
Bio-Robotics
Modeling, Dynamics, Navigation, and Control

Accomplishment: Soft smart materials used as actuators play an increasingly important role in the development of soft, biologically compatible locomotion systems. However, their compliant nature and distributed surface interactions make the systems highly complex. While soft body locomotion has been demonstrated at a variety of length scales, the modeling of such systems remains highly specific and ad-hoc. Data-driven geometric mechanics provides a practical framework for characterizing system dynamics for dissipative and underactuated systems. Forward locomotion requires symmetry breaking, and most prior hydrogel crawlers rely on surface features to break symmetry. The particular design here uses the morphologically tuned, spatially asymmetric hydrogel swelling dynamics to induce locomotion, eliminating the need for specialized surface structures.

Status: For this specific system, we show that despite the complexity introduced by the soft body, its body shape can be characterized using a low dimensional shape subspace via straightforward dimensionality reduction (PCA). We are working on an application of data-driven modeling on the soft crawler made of thermo-responsive hydrogels, materials that swell and shrink as a function of temperature. We made an extension to an existing data-driven method so that it is compatible with a more general input signal when we do not have direct affordance over the system shape. Based on finite element simulation data, we built and tested a data-driven model for the hydrogel locomotion behavior around its typical temperature cycles. The next step will be to test our locomotion modeling and gait design approach using physical hydrogel robots.

Funding: This work is supported by a collaborative National Science Foundation (NSF) Award to David Gracias, Thao (Vicky) Nguyen, Rebecca Schulman, and Noah J Cowan (1830893).

Key Personnel: David Gracias, Thao (Vicky) Nguyen, Rebecca Schulman, Noah J Cowan, Brian A Bittner, Kuan-Lin Chen, Ruohong Shi, Ashwarya Pantula, Bibekananda Datta, Siming Deng

For More Information: doi.org/10.1126/scirobots.add2903
doi.org/10.1109/ICRA46639.2022.9812061
Telerobotic Satellite Servicing

PI: Peter Kazanzides, Louis Whitcomb

- **Human-Machine Collaborative Systems**
- **Modeling, Dynamics, Navigation, and Control**
- **Perception and Cognitive Systems**
- **Robotics in Extreme Environments**

Accomplishment: Research in support of NASA’s OSAM-1 mission to demonstrate telerobotic refueling of a satellite on orbit, subject to multi-second ground-to-orbit communication delays. Recent accomplishments include:
 1. the Worksite Registration Tool (WRT) software to create a 3D model of the space environment from a robotic camera survey,
 2. an interactive planning capability, in virtual reality, that enables operators to plan, preview, and then execute robotic motions while avoiding collisions, and
 3. a computer vision method to measure and control tool engagement during thermal blanket cutting.

Status: Ongoing support for the NASA OSAM-1 mission, including enhancements to the Worksite Registration Tool and experimental evaluation of interactive planning in virtual reality.

Funding: NASA NNG15CR66C

Augmented Reality Assistance for Robotic Surgery

PI: Peter Kazanzides

- **Human-Machine Collaborative Systems**
- **Medical Robots and Computer Integrated Interventional Systems**

Accomplishment: Developed augmented reality assistance on a head-mounted display for the bedside assistant in robotic surgery.

Status: Developed an automated system, using a robot and optical tracking system, to collect images and ground-truth data to train and evaluate markerless methods for the transformation between the HoloLens 2 HMD and the da Vinci.

Funding: Intuitive Surgical Technology Research Grant, CUHK

Key Personnel: Peter Kazanzides, Nick Greene, Wenkai Luo

Patents: 11244508 and it was issued on Feb 8, 2022

For More Information: smarts.lcsr.jhu.edu/research
Force Estimation for Surgical Robotics

PI: Peter Kazanzides

Accomplishment: Developed neural networks to estimate external forces on da Vinci Research Kit (dVRK) based on measured joint positions, velocities, and torques. Recent accomplishments include compensation for trocar interaction effects, instrument changes, and different robots.

Status: Methods have been implemented for real-time use with dVRK. Next step includes applications for bilateral teleoperation and autonomous force control.

Funding: Intuitive Surgical Technology Research Grant

Key Personnel: Peter Kazanzides, Jie Ying Wu, Nural Yilmaz, Ugur Tumerdem, Jintan Zhang

For More Information: smarts.lcsr.jhu.edu/research

Next-generation da Vinci Research Kit (dVRK-Si)

PI: Peter Kazanzides

Accomplishment: Developed open source controller for second and third generation da Vinci patient-side robots. This controller is compatible with the existing first-generation dVRK controller. In addition, implemented major electronics updates, including change from Spartan 6 field programmable gate array (FPGA) to Zynq System on Chip (SoC).

Status: Prototype controller has been implemented and tested. Production of controllers for the research community is in process and is expected to be available in Spring 2023.

Funding: Intuitive Foundation

Key Personnel: Peter Kazanzides, Anton Deguet, Keshuai Xu, Jie Ying Wu

For More Information: github.com/jhu-dvrk/sawIntuitiveResearchKit/wiki
AccelNet Surgical Robotics Challenge

PI: Peter Kazanzides

Medical Robots and Computer Integrated Interventional Systems
Perception and Cognitive Systems

Accomplishment: Developed an open source surgical simulator based on the Asynchronous Multi-Body Framework (AMBF) and released a challenge to the community, where competitors attempted to develop algorithms for autonomous suturing.

Status: First challenge (in simulation only) concluded in June 2022. Second challenge to begin in early 2023 (online, in simulation) and conclude late 2023 with an in-person challenge in a physical setup.

Funding: NSF OISE-1927354

Key Personnel: Peter Kazanzides, Adnan Munawar, Juan Antonio Barragan

X-ray Image-based Navigation for Periacetabular Osteotomy with Intraoperative Biomechanical Feedback

PIs: Russell Taylor, Mehran Armand

Medical Robots and Computer Integrated Interventional Systems

Accomplishment: We have developed processing to use intraoperative 2D X-ray imaging for anatomical pose estimation of intact and fractured bone structures. Our approach differs from existing systems by not requiring the use of optical tracking devices or external fiducial objects.

Status: The navigation system tested with cadaver experiments. Optimal screw placement simulated. Open source libraries and compiled binaries are available at https://github.com/r2d/xreg.

Funding: NIH/NIBIB R21EB020113, JHU/APL graduate student scholarship

Key Personnel: Mehran Armand, Russell Taylor, Robert Grupp, Mahsan Bakkhtiar Nejad

For More Information: bigss.lcsr.jhu.edu
Accomplishment: We have developed a novel semi-autonomous control framework enabling probe-based confocal laser endomicroscopy (pCLE) scan of retinal tissue.

This method combines real-time image-based autonomous control of the probe-to-tissue distance with virtual fixtures to assist lateral scanning of the probe across the retinal surface. It was implemented using the dVRK software framework developed at JHU and across the retinal surface. It was implemented using key insights drawn from our manual system.

Status: Sanana is pursuing further development of the manual production fixtures for good-manufacturing-practice (GMP) while we are working on the automated system.

Funding: This work was supported in part by NIH SBIR grants R43AI112165 and R44AI134500. Additionally, H. Phalen was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1746891.

Key Personnel: JHU: Zhaoshuo Li, Mahya Shahbazi, Preetham Chalasani, Niravkumar Patel, Peter L. Gehlbach, Iulian Iordachita, Russell H. Taylor

Hamlyn Centre for Medical Robotics: Eimear O’Sullivan, Haojie Zhang, Khushi Vyas, Guang-Zhong Yang

Phalen was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1746891.

Any other info: This was a joint project with the Hamlyn Centre for Medical Robotics.

For More Information: rht@jhu.edu

Key Personnel (current): JHU: Russell Taylor, Iulian Iordachita, Balazs Vagvolgyi, Simon Leonard, Anna Goodridge, Vishnu Kolal, Jiayin Luo, Miles Liu, Trent Tang, Mohit Gupta, Stephen Hoffman (Sanana), Sumana Chakravarty (Sanana), Kim Lee Sim (Sanana).

Past personnel: Greg Chirikjian, Mariah Schrum, Amanda Canezin, Henry Phalen, Akash Chaurasia, Matthew Fernandez, Jialan Ma, Disha Mishra, Disha Sarawgi, Andrew Shaughnessy, Hongtao Wu, Mengdi Xu, Shengnan Lu, Michael Pozin, Jin Seob Kim, Nicholas Lamaison, Can Kocabalkani, Prasad Vagdargi, Yuein Chen, Wanze Li, Alan Liu, John Han

For More Information: rht@jhu.edu
Steady-hand Robot for Head-and-neck Surgery

PI: Russell Taylor

Human Machine Collaborative Systems
Medical Robots and Computer Integrated Interventional Systems

Accomplishment: We have developed a prototype “steady-hand” robot for head-and-neck microsurgery. The robot was specifically designed for tremor-free operation of long tools reaching into holes while keeping the mechanism as much as possible out of the surgeon’s line of sight. The control resembles power steering in a car. Both the robot and the surgeon hold the tool. The robot senses forces on the tool and moves to comply. Since the robot is doing the motion, there is no tremor, and the robot can also implement “virtual fixtures” to help guide the motion or enforce safety barriers. The robot can also be integrated with surgical navigation systems.

Status: Prototype robot exists; application demos for laryngeal, sinus, open microsurgery; developing additional components for OR integration and otology; patents issued and others in prosecution; technology licensed to Galen Robotics, Inc., a startup company making a clinical/commercial version. Advanced R&D work continues in LCSM under a Master Agreement with Galen.

Funding: JHU internal funds; JHU Cohen Fund; Maryland Innovation Initiative; contract with Galen: JHU internal funds, JHU Cohen Fund; Funding LCSM under a Master Agreement with Galen.

Deformable Registration Using Statistical Shape Models

PI: Russell Taylor

Perception and Cognitive Systems

Accomplishment: We have developed a paradigm that enables deformable registration between points generated from a shape and a statistical model of that shape, based on extensions of the “most likely point” paradigm introduced by Billings, et al. The purpose of this system is to allow inference of anatomical shapes from partial images. For instance, during an endoscopic examination of the nasal cavity, the field of view of the observer is limited to that of the endoscope, and usually a preoperative CT of the patient is not used for context and localization. Using this registration paradigm, the examiner can gain context cues without the need of a CT by using a statistical model of the nasal cavity to which points from endoscopic video can be deformably registered, and inferring the specific patient’s nasal cavity. This paradigm can also be used on non-medical data, for instance, inferring facial expressions using points sampled from faces and deformably registering to a facial expression model. Our current experiments show promising submillimeter results on both simulation and clinic data.

Status: Three different algorithms have been built using this paradigm, and several experiments with simulated and in vivo clinical data have shown that submillimeter registrations and reconstructions can be achieved using these algorithms. This work has also been used in registration of both CT-derived and statistical models of sinus anatomy to endoscopic video. The paradigm is expected to be useful in other fields as well.

Selected papers:

Related Project: Image-based Modeling and Analysis of Anatomical Structures in the Human Temporal Bone

For More Information: rht@jhu.edu
Complementary Situational Awareness for Intelligent Telerobotic Surgical Assistant Systems

PI: Russell Taylor

Accomplishment: The main goal of this collaborative project with Carnegie-Mellon University (CMU) and Vanderbilt University was to establish the foundations for what we call “Computational Situational Awareness (CSA).” This work emphasizes development of a three-way partnership between physicians, technology, and information in minimally invasive surgery. Specific research goals include: 1) real-time sensing during task execution; 2) situational awareness modeling fusing preoperative data, intraoperative sensing, and task models; and 3) telemanipulation and information assistance provided to the surgeon based on the real-time situational models. In addition to developing the basic system infrastructure and high-level control scheme used within the project, JHU’s role included novel assistive methods for robot-assisted palpation in order to locate stiff features such as tumors or arteries beneath the organ surface.

Status: NSF-funded NRI funded phase completed. Ongoing work to incorporate basic concepts into other projects.

Funding: NSF NRI grants (IIS1327566, IIS1327657, IIS1426655)

Key Personnel: JHU: Russell Taylor, Preetham Chalasani, Peter Kazanzides, Anton Deguet, Marin Kobilarov, Mahya Shahbazi, Long Wang, Zhan Chen, Zhaoshuo Li

CMU: Howie Choset, Rangaprasad Arun Sivathan, Nicolas Zevallos, Hadi Salman; Vanderbilt: Nabil Smaa, Long Wang, Rashid Yasin, Colette Abah

For More Information: nri-csa.vuse.vanderbilt.edu/joomla

P. Chalasani, Complementary Situational Awareness For Intelligent Telerobotic Surgical Assistant Systems, PhD thesis in Computer Science, Johns Hopkins University, Baltimore, October 2018.

Related Project: 3D Reconstruction of Sinus Anatomy from Monocular Endoscopic Video using Self-supervised Learning

For More Information: rht@jhu.edu, unberath@jhu.edu, or hager@jhu.edu

Enhanced Navigation for Endoscopic Sinus Surgery through Video Analysis

PIs: Russell Taylor, Mathias Unberath, Gregory Hager

Accomplishment: We have developed methods for reconstructing the shape of surfaces in the sinus cavity directly from untracked endoscopic video sequences and then registering them to patient CT or to statistical models of anatomy. This enables surgical navigation without external tracking devices and also enables combining anatomic labels and other information with real-time video displays to assist the surgeon.

Funding: R01 EB015530, Galen Robotics, Johns Hopkins University internal funds

Related Project: 3D Reconstruction of Sinus Anatomy from Monocular Endoscopic Video using Self-supervised Learning

For More Information: rht@jhu.edu, unberath@jhu.edu, or hager@jhu.edu
Image-based Modeling and Analysis of Anatomic Structures in the Human Temporal Bone

PI: Russell Taylor, Francis Creighton

Perception and Cognitive Systems

Accomplishment: We have developed automated segmentation methods and statistical models of anatomic structures in the human temporal bone based on high-resolution cone-beam CT (CBCT) images and have applied these models to study inter-patient variability of these structures. Future uses of these methods include patient-specific surgical planning, image-derived patient-specific virtual fixtures for robotic surgery, outcome studies, and surgical training.

Status: Active project with initial results published.

Funding: NIH T32 Training Grant (T32 DC000027); NIH award K08DC019708; Johns Hopkins internal funds.

Key Personnel: Andy S. Ding, Alexander Lu, Jeffrey Siewerdsen, Russell H. Taylor, Francis X. Creighton

Selected Papers:

For More Information: rht@jhu.edu or francis.creighton@jhmi.edu

Real-time Modeling and Registration of 3D Surgical Field from Surgical Microscope Data

PIs: Russell Taylor, Mathias Unberath

Perception and Cognitive Systems

Accomplishment: We are developing efficient real-time methods for recovering dense point cloud representations of surgical field from stereo data captured from stereo microscopes and for using them to maintain real-time models of the surgical field. The primary motivating application for this work is image-guided otologic structures. However, the basic method is applicable in other surgical and non-surgical applications.

Status: We have developed an efficient transformer-based method for recovering dense point clouds and have evaluated this method on multiple image streams. In one evaluation experiment on a temporal bone phantom, registration of the recovered point cloud to a temporal bone phantom produced an RMS match error of ~1.1 mm. In subsequent work done in collaboration with the Chinese University of Hong Kong, these methods were combined with tool segmentation algorithms developed at CUHK and applied to stereo endoscopic data. Work is continuing at JHU to develop efficient and robust tool segmentation methods for skull base surgery.

Funding: This work was supported by a research agreement between JHU and Galen Robotics, NIH award K08DC019708, equipment support from Haag-Streit, and Johns Hopkins internal funds.

Key Personnel: (JHU) Zhaoshuo Li, Xingtong Liu, Nathan Drenkow, Andy Ding, Sue Min Cho, Francis X. Creighton, Russell H. Taylor, Mathias Unberath; (CUHK): Qi Dou, Yonghao Long

Selected Papers:

For More Information: rht@jhu.edu or unberath@jhu.edu
Virtual Reality Simulator for Temporal Bone Surgery

PIs: Russell Taylor, Mathias Unberath, Peter Kazanzides, Adnan Munawar

Accomplishment: We have developed a virtual reality simulator for skull base surgery, based on segmented CT models of the anatomy and the AMBF simulation environment developed by Adnan Munawar. Initial uses for this system include surgical training and generation of training data for machine learning applications. Further anticipated uses will include integration with an actual robot to provide online situational awareness during robotic surgery applications.

Key Personnel: Adnan Munawar, Zhaoshuo Li, Punit Kunjam, Nimesh Nagururu, Andy S. Ding, Peter Kazanzides, Francis X. Creighton, Russell H. Taylor, Mathias Unberath, Hisashi Ishida

For More Information: rht@jhu.edu, amunawa2@jh.edu, or francis.creighton@jhmi.edu

Endoscopic Fringe Projection Profilometry for Robot Assisted Intestine Anastomosis

PI: Jin U. Kang

Accomplishment: We develop an endoscopic fringe projection profilometry for robot assisted intestine anastomosis. The system enabled high-speed accurate 3D surgical site image reconstruction for precise robotic surgical control.

Key Personnel: Jin U. Kang, Shuwen Wei, Axel Krieger

Status: Current

Funding: NIH R01
Artificial Intelligence Optical Coherence Tomography Guided Deep Anterior Lamellar Keratoplasty (AUTO-DALK)

PI: Jin U. Kang

Accomplishment: Contemporary ocular surgeries are performed by skilled surgeons through operating microscopes, utilizing freehand techniques and manually operated precision micro-instruments, where the outcomes are often limited by the surgeon’s skill levels and experiences. To overcome these human factors, we have assembled an interdisciplinary team including a clinician-scientist and eye surgeon, an optical device scientist, and medical robotic engineers to translate existing and developing technologies in our laboratories into precision, “deep-learning” artificial intelligence (AI) guided robotic ocular surgical devices for precise automated Deep Anterior Lamellar Keratoplasty (AUTO-DALK). Here, we build upon our previous and ongoing work in robust fiber optic common-path optical coherence tomography (CP-OCT) and AI-guide system based on convolutional neural network (CNN) robotic microsurgical tools that enable clinicians to precisely guide surgical tools at micron scale. The proposed AUTO-DALK surgical tool system is capable of one-dimensional real-time depth tracking, motion compensation, and detection of early instrument contact with tissue, which enables clinicians to perform DALK precisely and safely.

Status: on going

Funding: NIH 1R01EY032127-01

Key Personnel: Shoujing Guo, Yaning Wang, Jin U. Kang
LABORATORY FOR
COMPUTATIONAL SENSING & ROBOTICS

ASSURED AUTONOMY

BIOROBOTICS

HUMAN MACHINE COLLABORATIVE SYSTEMS

MEDICAL ROBOTS AND COMPUTER INTEGRATED INTERVENTIONAL SYSTEMS

MODELING, DYNAMICS, NAVIGATION, AND CONTROL

PERCEPTION AND COGNITIVE SYSTEMS

ROBOTICS IN EXTREME ENVIRONMENTS