Calendar

May
2
Wed
LCSR Seminar: Ross Hatton “Snakes & Spiders, Robots & Geometry” @ Hackerman B17
May 2 @ 12:00 pm – 1:00 pm

Last Seminar of the Semester.

 

Abstract:

Locomotion and perception are a common thread between robotics and biology. Understanding these phenomena at a mechanical level involves nonlinear dynamics and the coordination of many degrees of freedom. In this talk, I will discuss geometric approaches to organizing this information in two problem domains: Undulatory locomotion of snakes and swimmers, and vibration propagation in spider webs.

In the first section, I will discuss how differential geometry and Lie group theory provide insight into the locomotion of undulating systems through a vocabulary of lengths, areas, and curvatures. In particular, a tool called the *Lie bracket* combines these geometric concepts to describe the effects of cyclic changes in the locomotor’s shape, such as the gaits used by swimming or crawling systems. Building on these results, I will demonstrate that the geometric techniques are useful beyond the “clean” ideal systems on which they have traditionally been developed, and can provide insight into the motion of systems with considerably more complex dynamics, such as locomotors in granular media.

In the second section, I will turn my attention to vibration propagation through spiders’ webs. Due to poor eyesight, many spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider’s behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider’s mass and stiffness on the vibration transmission patterns.

Bio:

Ross L. Hatton is an Assistant Professor of Robotics and Mechanical Engineering at Oregon State University, where he directs the Laboratory for Robotics and Applied Mechanics. He received PhD and MS degrees in Mechanical Engineering from Carnegie Mellon University, following an SB in the same from Massachusetts Institute of Technology. His research focuses on understanding the fundamental mechanics of locomotion and sensory perception, making advances in mathematical theory accessible to an engineering audience, and on finding abstractions that facilitate human control of unconventional locomotors. Hatton’s group also works with local industry to transfer modern developments in robotics from the lab to the factory or commercial production. Dr. Hatton is the recipient of a 2017 NSF CAREER award to further his work in the dynamics of locomotion.

 

May
9
Wed
LCSR Seminar: Jizong Zhao “Combined Surgical and Endovascular Treatment of Arteriovenous Malformation in the Hybrid Operating Room” @ Hackerman B17
May 9 @ 12:00 pm – 1:00 pm

Abstract:

Microsurgical resection, endovascular means and stereotactic radiotherapy are the major treatments of cerebral arteriovenous malformations (AVM) and each method has its own limitations. Preoperative fractionation embolization can reduce bleeding and surgical risk, however, patients have to experience repeated pain due to the repeated treatments, and face the risk of rupture of AVM during treatment. The purpose of this study is to evaluate the advantages and safety of combined surgical and endovascular. One hundred and ninety-five patients were successfully completed with combination of endovascular therapy and craniotomy in the hybrid operating room from February 2016 to July 2017 in Beijing Tiantan Hospital. We get our initial experience of combined surgical and endovascular procedures in hybrid operating room (OR) in the treatment of cerebral AVM. Hybrid operation can improve the ratio of total resection and efficacy of surgery of cerebral AVM, and reduce post-operative complications, medical costs and the repeated pain due to the repeated DSA examinations.

 

Bio:

Professor Jizong Zhao, Academician of the Chinese Academy of Sciences. Prof. Zhao is the director, doctoral supervisor, and Chief of Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University. Prof. Zhao also serves as the Member of the Expert Group of the Academic Degrees Committee of the State Council, Director of China National Clinical Research Center for Neurological Diseases, Chairman of the 4–6th Chinese Medical Association Neurosurgery Branch, President of the Chinese Stroke Society, member of the Executive Committee of the World Neurosurgical Union (WFNS), Nomination Committee Member of the United States ANNS, Chairman of the Committee of the Dandy Neurosurgery Society of China, director of the National Higher Education Medical Textbook Research Council, chief editor of Chinese Neurosurgical Journal, deputy editor of Chinese Medical Journal and the Chinese Medical Journal (English version), editor of eight international journals in the field of neurosurgery, including Journal of Clinical Neuroscience.

Dr. Zhao’s research mainly focuses on cerebrovascular disease and brain tumor. He was the principal investigator of China’s ninth, tenth and eleventh Five-Year Plan for Science & Technology Support and honored with National Science & Technology Progress Awards. Prof. Zhao published more than 490 peer-reviewed articles papers, including over 90 SCI included articles and 9 books in the field of neurosurgery. As a world-wide recognized neurosurgeon and clinical neuroscience researcher, Dr. Zhao also serves on the editorial boards of seven scientific journals including Neurosurgical Review, Journal of Clinical Neuroscience and  Neurosurgery.

Aug
24
Fri
LCSR: New Student Orientation @ Hackerman 320
Aug 24 @ 10:00 am – 11:30 am
Sep
5
Wed
LCSR Seminar: Welcome Town Hall @ Hackerman B17
Sep 5 @ 12:00 pm – 1:00 pm

Abstract

 

This is the Fall 2018 Kick-Off Seminar, presenting an overview of LCSR, useful information, and an introduction to the faculty and labs. Guests: Sue Vazakas (Librarian) and Career Services

Sep
7
Fri
Robotics Ice Cream Social @ Hackerman Robotorium
Sep 7 @ 12:30 pm – 1:30 pm

Come join us to meet fellow LCSR students and faculty while eating ice cream from the Charmery.

Sep
12
Wed
LCSR Seminar: Edinah Gnang “Broadening the Linear Algebra Toolkit for engineering applications” @ Hackerman B17
Sep 12 @ 12:00 pm – 1:00 pm

Abstract

The quote: “Mathematics is the art of reducing any problem to linear algebra.” by William Stein wonderfully articulates the importance of Linear Algebraic techniques in Pure Mathematics as well as in Engineering applications. I my talk I will discuss how engineering applications as well as recent questions in machine learning have led to a considerable broadening of the linear algebraic toolkit.

 

Bio

Edinah Gnang is an assistant professor in the Department of Applied Mathematics and Statistics. His research interests include discrete mathematics, graph theory, multilinear algebra, image analysis, and experimental math. He earned his doctorate at Rutgers University in 2013.

Sep
19
Wed
LCSR Seminar: Balazs Vagvolgyi “On-Orbit Robotic Satellite Servicing” @ Hackerman B17
Sep 19 @ 12:00 pm – 1:00 pm

Abstract

There are currently over two thousand satellites catalogued on-orbit. Most of them were designed with a finite service life limited by fuel for attitude control and altitude boost. When the fuel is consumed, or a fault occurs in a satellite, we presently lack the ability to conduct on-orbit refueling and repairs. NASA’s Space Shuttle Program enabled a variety of satellite service missions, but all were performed by human spacewalks or robots controlled by crew from within the spacecraft. The most well-known examples are the Hubble Space Telescope servicing missions. However, the risks and cost of using astronauts make satellite servicing by humans prohibitive in all but a very few cases. NASA is currently developing the capabilities necessary to perform satellite servicing tasks telerobotically, with ground-based robot operators. The planned unmanned servicing spacecraft will be equipped with an array of sensors, remotely operated robotic arms, and servicing tools.

In the talk, I will give an overview of NASA’s past and future servicing missions and discuss the partnership between JHU’s Laboratory for Computational Sensing and Robotics (LCSR) and NASA’s Satellite Servicing Projects Division (SSPD) in developing novel robot control methods and robotic tools for upcoming missions. The research efforts at JHU-LCSR focus on facilitating the cutting of thermal insulation on satellites using force sensitive robotic tools and dynamical modeling of the cutting process, and improving the situational awareness of robot operators while performing complex manipulation tasks with limited visual feedback by employing mixed-reality visualization techniques.

 

Bio

Balazs P. Vagvolgyi is an Associate Research Scientist in the Laboratory for Computational Sensing and Robotics at the Johns Hopkins University. He holds a MSc in Computer Science. Before coming to JHU in 2006, he worked on the imaging pipeline of flat-panel interventional vascular X-ray systems at GE Healthcare. He briefly left Hopkins in 2013-2014 to build real-time imaging solutions for mobile as Chief Scientist for Spherical Inc. in San Francisco, CA. His professional interests and research focus on real-time computer vision and visualization, primarily in the context of robotics and medical interventions.

 

Recorded Fall 2018 Seminars

Sep
26
Wed
LCSR Seminar: Career Center “Resume Writing as a Job Search Strategy” @ Hackerman B17
Sep 26 @ 12:00 pm – 1:00 pm
Oct
3
Wed
LCSR Seminar: Adrian Park “Surgical Visualization – an evolution” @ Hackerman B17
Oct 3 @ 12:00 pm – 1:00 pm

Abstract

The advent of laparoscopic cholecystectomy almost 30 years ago would change forever the way surgeons visualize and interact with target anatomy Patients continue to benefit from different yet related image guided therapies that also allow access to pathology by minimally invasive means.  As we continue to depend upon images to guide and inform patient interventions it is instructive to review the advances made in surgical visualization over its recent history and look forward to issues that will need to be addressed toward optimization of interventional visualization.  These issues will be reviewed from the perspective of a clinician, and not a computer scientist nor physicist with attention also paid to the often neglected topics of ergonomics and human factors considerations in surgical visualization.

 

Bio

Dr. Park is Chairman of the Department of Surgery  at  Anne Arundel Medical Center  in Annapolis, MD and Professor of Surgery at Johns Hopkins University School of Medicine. Dr. Park has made major advancements in the improvement of laparoscopic techniques for complex hernia repair, foregut and spleen surgery.

Previously Dr. Park was the Dr. Alex Gillis Professor and Chairman of the Department of Surgery at Dalhousie University in Halifax, NS.  Prior to this appointment, Park served as the Campbell and Jeanette Plugge Professor and Vice Chair for the Department of Surgery, the Head of the Division of General Surgery at the University of Maryland Medical Center, and the Chair of the Maryland Advanced Simulation, Training, Research, and Innovation (MASTRI) Center.

He  is a member of the American Surgical Association, and is a Fellow of the Royal College of Surgeons of Canada, American College of Surgeons and the College of Surgeons of Central Eastern and Southern Africa. Having a long held commitment to  the training of surgeons in sub Saharan Africa, he is a past president of the Pan African Academy of Christian Surgeons (PAACS).

Currently a member of the Board of Directors of the SAGES, he has also served as the Fellowship Council’s founding President and as its Board Chair.  He is editor-in-chief of Surgical Innovation. The author of over 250 scholarly articles and book chapters, he is widely published in the areas of hernia, solid organ laparoscopy, foregut surgery , surgical education, the “Operating Room of the Future”  and surgical ergonomics.  Dr. Park holds 20 patents and has been instrumental in the development and application of new technologies in endoscopic surgery.

Oct
10
Wed
LCSR Seminar: Nikolay Vasilyev “Implantable stretchable sensors and soft robotic assist devices for monitoring and therapy of heart failure” @ Hackerman B17
Oct 10 @ 12:00 pm – 1:00 pm

Abstract

Heart failure (HF) represents a significant healthcare burden in the United States and worldwide. With a prevalence of 5.7 million in the US, HF costs the nation an estimated $30.7 billion each year. About half of people who develop HF die within 5 years of diagnosis.

Continuous monitoring of cardiac function in HF using implantable electronic devices suggests reductions in mortality, all-cause hospitalizations and HF related hospitalizations. However, most of the current monitoring approaches aim for collecting the data (heart rate, pressure, oxygen saturation, metabolites) that are derivative representations of the primary – mechanical pumping – function of the heart.

Current therapy for end-stage HF, when medical management options have been exhausted, includes heart, lung or heart-lung transplantation, or mechanical circulatory support when a donor organ is not available. Several ventricular assist devices (VADs) provide short and long-term mechanical circulatory support for either left or right ventricles, or both. The ventricles have a complex geometry and contraction pattern that involves coordinated motion of the ventricular free walls and the ventricular septum. Current VAD designs do not address these anatomic and physiologic features of the ventricles, as the VADs are designed as pumps that unload the target ventricle by rerouting blood through an artificial circuit. Moreover, blood contact with the artificial circuit necessitates permanent anticoagulation and predisposes patients to bleeding and thromboembolic complications.

We have designed 1) implantable stretchable sensors that continuously acquire myocardial strain data and 2) soft robotic VADs (SR-VADs) with ventricular septal bracing as innovative approaches to continuously monitor ventricular function and to assist native ventricular contraction in end-stage HF. We demonstrated proof of concept in large animal studies by showing that functional prototypes can be safely and rapidly implanted on a beating heart and function for several hours. Future directions include designing sensors that capture multiaxial strain signal, manufacturing soft actuators that fully mimic ventricular motion, incorporating sensors for organ-in-the-loop control and validating the approach in longer-term studies.

 

Bio

Nikolay V. Vasilyev graduated from Sechenov First Moscow State Medical University. He completed his residency and fellowship training in cardiovascular surgery at Bakoulev Center for Cardiovascular Surgery in Moscow, and his research fellowship at the Cleveland Clinic, Cleveland, Ohio, USA. Dr. Vasilyev currently serves as a Staff Scientist at the Department of Cardiac Surgery at Boston Children’s Hospital and as an Assistant Professor of Surgery at the Division of Surgery at Harvard Medical School. His research has been focused on development of image-guided beating-heart cardiovascular interventions and cardiac surgical robotics. This includes clinically driven device design, development of imaging techniques and image processing, computer modeling and simulation. To date Dr. Vasilyev has published over fifty peer-reviewed papers, five book chapters and received four patents, with four more applications are pending. He is a member of the European Association of Cardiothoracic Surgery, where he served on the International Co-Operation Committee, and a member of the American Heart Association and American Society for Artificial Internal Organs. He is a Co-Founder and a Director of a start-up company Nido Surgical Inc.

 

Recorded Fall 2018 Seminars