Calendar

May
3
Wed
LCSR Seminar: Ann Manjewicz – Designing Human-in-the-Loop Systems for Surgical Training and Intervention @ B17 Hackerman Hall
May 3 @ 12:00 pm – 1:00 pm

Abstract

Human-controlled robotic systems can greatly improve healthcare by synthesizing information, sharing knowledge with the human operator, and assisting with the delivery of care. This talk will highlight projects related to new technology for surgical simulation and training, as well as a more in depth discussion of a novel teleoperated robotic system that enables complex needle-based medical procedures, currently not possible. The central element to this work is understanding how to integrate the human with the physical system in an intuitive and natural way, and how to leverage the relative strengths between the human and mechatronic system to improve outcomes.

Bio

Ann Majewicz completed B.S. degrees in Mechanical Engineering and Electrical Engineering at the University of St. Thomas, the M.S.E. degree in Mechanical Engineering at Johns Hopkins University, and the Ph.D. degree in Mechanical Engineering at Stanford University. Dr. Majewicz joined the Department of Mechanical Engineering as an Assistant Professor in August 2014, where she directs the Human-Enabled Robotic Technology Laboratory. She holds at courtesy appointment in the Department of Surgery at UT Southwestern Medical Center. Her research interests focus on the interface between humans and robotic systems, with an emphasis on improving the delivery of surgical and interventional care, both for the patient and the provider.

May
8
Mon
LCSR Special Seminar: Carl Kaiser, PhD – Adaptive Deep Sea Science Missions with an Autonomous Underwater Vehicle and Acoustic Communications @ B-17 Hackerman Hall
May 8 @ 1:00 pm – 2:00 pm

Adaptive Deep Sea Science Missions with an Autonomous Underwater Vehicle and Acoustic Communications

Carl Kaiser, PhD
AUV Program Manager
National Deep Submergence Facility
Woods Hole Oceanographic Institution

 

Abstract

Over the last 15 years Autonomous Underwater Vehicles (AUVs) have migrated finicky experiments to a mature capability providing routine operational support to deep sea scientists. Moreover, the boundaries of science that can be conducted with AUVs are advancing rapidly and in unexpected directions. The AUV Sentry entered the National Deep Submergence Facility (NDSF) in 2010 and has completed more than 420 dives in support of Ocean Science. Sentry operates up to 190 days per year and is a “fly-away” system that can be shipped to a vessel of opportunity anywhere in the world by land, sea, or air freight. Sentry has a unique design emphasizing maneuverability, steep terrain and extreme mission flexibility. It carries a wide range of standard sensors including a Multibeam Echo Sounder, a Sidescan Sonar, a Sub Bottom Profiler, a high resolution color camera and a variety of water chemistry sensors. A substantial number of custom sensors have been added and recently even sampling has been performed. Payload re-configuration between cruises and even between dives is routine and tens of new capabilities are added every year.
Increasingly acoustic communications are being used to interact with AUVs mid-mission for monitoring or mission intervention. However, these capabilities are still new and we have only scratched the surface of what is possible.
This talk will begin with a presentation of the AUV Sentry and typical science missions. It will then discuss the present state of the art in acoustic interaction and will conclude with a look at possible future directions for these technologies.

Bio

Dr. Carl Kaiser has a Bachelors, Masters, and PhD in Mechanical Engineering and Robotics from Colorado State University. Following graduate school, he made a brief foray into the corporate world of Southeast Asian manufacturing and supply chains before returning to academia. He has been at Woods Hole Oceanographic Institution since 2010 and is the Autonomous Underwater Vehicle Program Manger for the National Deep Submergence Facility as well as a Woods Hole Oceanographic Institution principle investigator focusing on novel applications of and technologies for Autonomous Underwater Vehicles in the deep ocean. He has spent more than a year at sea with various deep Submergence vehicles and several additional months in the field with them in various ports or shallow water test facilities. ​

Jun
28
Wed
LCSR Special Seminar: Avik De “Stable hopping and running from compositions of dynamical primitives” @ B17 Hackerman Hall
Jun 28 @ 12:00 pm – 1:00 pm

Abstract

The first dynamic legged robots (developed by Raibert) were controlled using a “three-part” hopping strategy, synthesized by developing controllers in isolation (e.g. vertical hopping controller ignores fore-aft motion). Dynamical systems theory can offer a formal representation of such reductions in terms of attracting invariant submanifolds with restriction dynamics conjugate to a template system, which itself may be a composition of several dynamical primitives. Such notions of reduction have appeared before in the literature (in the form of “anchored templates”, “zero dynamics”, “dynamic motion primitives”, “locomotor subfunctions”), and also in running animals across several orders of magnitude of scale. However, formal synthetic embedding (“anchoring”) of these requires cancellation of coupling terms appearing in the natural dynamics, which requires abundant actuation, sensing fidelity, and parametric certainty.
We introduce a new notion of approximate “averaged” anchoring which allows compositions of simple decoupled controllers (such as Raibert’s) to successfully embody dynamic running and hopping on a quadruped and tailed biped with few parameters and a great deal of empirical robustness. We then describe our new advances: a new analytical tool for formal verification of these compositions (hybrid averaging), which reveals for the first time (a) connections between morphology and composition, and (b) how within-stance time-reversal symmetry helps mitigate coupling interactions. We end with work-in-progress on compositions of feedback-stabilized attractors as robust reference generators for walking without any  feedforward components.

Bio

Avik De is a PhD candidate at the GRASP laboratory in the University of Pennsylvania advised by Dr Daniel Koditschek. He graduated with a BS/MS in Mechanical Engineering from Johns Hopkins University in 2010, during which he performed an empirical study on how/when human beings inject feedback to stabilize a 1-dimensional paddle juggling task. Bio-inspiration remains a key research interest, and during his PhD, he switched his efforts into modular/compositional control of dynamic locomotion, as well as the design of dynamic locomotor systems. He co-founded “Ghost Robotics” in 2016, commercializing research that led to the creation of a family of power-dense direct-drive legged robots with high actuation bandwidth and proprioceptive sensing capabilities. He has in part created curriculum for two online courses: “Robotics: Mobility”, and “Robotics: Capstone” on coursera.

Sep
6
Wed
LCSR Seminar: Welcome/Welcome Back Town Hall @ B17 Hackerman Hall
Sep 6 @ 12:00 pm – 1:00 pm

Abstract

 

This is the Fall 2017 Kick-Off Seminar, presenting an overview of LCSR, useful information, and an introduction to the faculty and labs.

Sep
20
Wed
LCSR Seminar: Chien-Ming Huang ” Designing Intuitive Interactions for Human-Robot Teams” @ B17 Hackerman Hall
Sep 20 @ 12:00 pm – 1:00 pm

Abstract

Robots hold promise in assisting people in a variety of domains including healthcare services, household chores, collaborative manufacturing, and educational learning. In supporting these activities, robots need to engage with humans in cooperative interactions in which they work together toward a common goal in a socially intuitive manner. Such interactions require robots to coordinate actions, predict task intent, direct attention, and convey relevant information to human partners. In this talk, I will present how techniques in human-computer interaction, artificial intelligence, and robotics can be applied in a principled manner to create and study intuitive interactions between humans and robots. I will demonstrate social, cognitive, and task benefits of effective human-robot teams in various application contexts. I will discuss broader impacts of my research, as well as future directions of my research focusing on intuitive computing.

 

Bio

Chien-Ming Huang is an Assistant Professor of Computer Science in the Whiting School of Engineering at The Johns Hopkins University. His research seeks to enable intuitive interactions between humans and machines to augment human capabilities. Dr. Huang received his Ph.D. in Computer Science at the University of Wisconsin–Madison in 2015, his M.S. in Computer Science at the Georgia Institute of Technology in 2010, and his B.S. in Computer Science at National Chiao Tung University in Taiwan in 2006. His research has been awarded a Best Paper Runner-Up at Robotics: Science and Systems (RSS) 2013 and has received media coverage from MIT Technology Review, Tech Insider, and Science Nation.

Sep
27
Wed
NO SEMINAR – CANCELLED FOR IROS
Sep 27 @ 12:00 pm – 1:00 pm
Oct
4
Wed
LCSR Seminar: Sarah Bergbreiter “Microsystems-inspired Robotics” @ B17 Hackerman Hall
Oct 4 @ 12:00 pm – 1:00 pm

Abstract

The ability to manufacture micro-scale sensors and actuators has inspired the robotics community for over 30 years. There have been huge success stories; MEMS inertial sensors have enabled an entire market of low-cost, small UAVs. However, the promise of ant-scale robots has largely failed. Ants can move high speeds on surfaces from picnic tables to front lawns, but the few legged microrobots that have walked have done so at slow speeds (< 1 body length/sec) on smooth silicon wafers. In addition, the vision of large numbers of microfabricated sensors interacting directly with the environment has suffered in part due to the brittle materials used in microfabrication. This talk will present our progress in the design of sensors, mechanisms, and actuators that utilize new microfabrication processes to incorporate materials with widely varying moduli and functionality to achieve more robustness, dynamic range, and complexity in smaller packages. Results include skins of soft tactile or strain sensors with high dynamic range, new models of bio-inspired jumping mechanisms, and magnetically actuated legged microrobots from 1 gram down to 1 milligram that provide insights into simple design and control for high speed locomotion in small-scale mobile robots.

 

Bio

Sarah Bergbreiter joined the University of Maryland, College Park in 2008 and is currently an Associate Professor of Mechanical Engineering, with a joint appointment in the Institute for Systems Research. She received her B.S.E. degree in Electrical Engineering from Princeton University in 1999, and the M.S. and Ph.D. degrees from the University of California, Berkeley in 2004 and 2007 with a focus on microrobotics. Her research uses inspiration from microsystems and biology to improve robotics performance at all scales. She has been awarded several honors including the DARPA Young Faculty Award in 2008, the NSF CAREER Award in 2011, and the Presidential Early Career Award for Scientists and Engineers (PECASE) in 2013 for her research on engineering robotic systems down to sub-millimeter size scales. She also received the Best Conference Paper Award at IEEE ICRA 2010 on her work incorporating new materials into microrobotics and the NTF Award at IEEE IROS 2011 for early demonstrations of jumping microrobots. She currently serves on DARPA’s Microsystems Exploratory Council and as an associate editor for IEEE Transactions on Robotics and ASME Journal on Mechanisms and Robotics.

Oct
11
Wed
LCSR Seminar – Yigit Menguc: “The mLab: Bringing Together Soft Active Materials, Bioinspired Mechanisms, and Multi-Material 3D Printing” @ B17 Hackerman
Oct 11 @ 12:00 pm – 1:00 pm

Abstract
Incredible biological mechanisms have emerged through evolution, and can provide a wellspring of inspiration for engineers. One promising area of biological inspiration is the design of devices and robots made of compliant materials, as part of a larger field of research in soft robotics. In this talk, the research topics of soft robotics currently underway in the mLab at Oregon State University will be presented. Soft active materials designed and researched in the mLab include liquid metal, biodegradable elastomers, and electroactive materials. Bioinspired mechanisms include octopus-inspired soft muscles, gecko-inspired adhesives, and soft wearable sensors. However, the biological mechanisms that serve as a source of inspirations are made of materials that are vastly more compliant than the metal and plastic that engineers and roboticists normally use. To imitate and improve on nature’s design, we must create mechanisms with materials like fabric and rubber which is difficult to integrate into traditional fabrication techniques. To address these limitation, the mLab is also innovating in multi-material 3D printing to rapidly and directly fabricate soft robots. Though significant challenges remain to be solved, the development of such soft materials and devices promises to bring robots more and more into our daily lives.

 

Biography
Dr. Yiğit Mengüç works at the interface of mechanical science and robotics, creating soft devices inspired by nature and applied to robotics. He received his B.S., 2006, at Rice University his M.S., 2008, and Ph.D., 2011, in Mechanical Engineering at Carnegie Mellon University. He completed his postdoctoral work at Harvard University’s Wyss Institute for Biologically Inspired Engineering in 2014 and is now an assistant professor of Robotics and Mechanical Engineering at Oregon State University where he founded and leads the mLab. He received an Office of Naval Research Young Investigator Program (ONR YIP) Award in 2016 to develop cephalopod-inspired robots.

Oct
18
Wed
LCSR Seminar: Ziv Yaniv “SimpleITK: Image Analysis Without the Agonizing Pain” @ B17 Hackerman Hall
Oct 18 @ 12:00 pm – 1:00 pm

Abstract

SimpleITK is a simplified, open source, multi-language interface to the National Library of Medicine’s Insight Segmentation and Registration Toolkit (ITK), a C++ open source image analysis toolkit which is widely used in academia and industry. SimpleITK is available in multiple programing languages including: Python, R, Java, C#, C++, Lua, Ruby, and TCL. Binary versions of the toolkit are available for the GNU Linux, Apple OS X, and Microsoft Windows operating systems. For researchers, the toolkit facilitates rapid prototyping and evaluation of image-analysis workflows with minimal effort using their programming language of choice. For educators and students, the toolkit’s concise interface and support of scripting languages facilitates experimentation with well-known algorithms, allowing them to focus on algorithmic understanding rather than low level programming skills.

 

The toolkit development process follows best software engineering practices including code reviews and continuous integration testing, with results displayed online allowing everyone to gauge the status of the current code and any code that is under consideration for incorporation into the toolkit. User support is available through a dedicated mailing list, the project’s Wiki, and on GitHub. The source code is freely available on GitHub under an Apache-2.0 license (github.com/SimpleITK/SimpleITK). In addition, we provide a development environment which supports collaborative research and educational activities in the Python and R programming languages using the Jupyter notebook web application. It too is freely available on GitHub under an Apache-2.0 license (github.com/InsightSoftwareConsortium/SimpleITK-Notebooks).

 

The first part of the presentation will describe the motivation underlying the development of SimpleITK, its development process and its current state. The second part of the presentation will be a live demonstration illustrating the capabilities of SimpleITK as a tool for reproducible research.

 

Bio

Dr. Ziv Yaniv is a senior computer scientist with the Office of High Performance Computing and Communications, at the National Library of Medicine, and at TAJ Technologies Inc. He obtained his Ph.D. in computer science from The Hebrew University of Jerusalem, Jerusalem Israel. Previously he was an assistant professor in the department of radiology, Georgetown university, and a principal investigator at Children’s National Hospital in Washington DC. He was chair of SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling (2013-2016) and program chair for the Information Processing in Computer Assisted Interventions (IPCAI) 2016 conference.

 

He believes in the curative power of open research, and has been actively involved in development of several free open source toolkits, including the Image-Guided Surgery Toolkit (IGSTK), the Insight Registration and Segmentation toolkit (ITK) and SimpleITK.

Oct
25
Wed
LCSR Seminar: Murty Challa “Simple, Robust, and Accurate Attitude Kalman Filters” @ B17 Hackerman
Oct 25 @ 12:00 pm – 1:00 pm

Abstract

This talk will show that attitude Kalman filters can be simple in design while also being robust and accurate despite the highly nonlinear nature of attitude (i. e., orientation) estimation. Three different filters are discussed, all using quaternions and small-angle approximations of attitude errors: an Extended Kalman filter as well as an Unscented Kalman filter for a gyro-based situation, and an Extended Kalman filter for a gyro-less one. In additon to the three-axis attitude, all of the filters also estimate corrections to the angular velocity – random walk modeled biases in the gyro measured case, and first-order Markov modeled corrections in the gyro-less case, which involves angular velocity computed from mass properties and control data.
The filters are evaluated using extensive real and simulated data from low-Earth orbiting NASA satellites such as Tropical Rainfall Measurement Mission, Solar, Anomalous, and Magnetospheric Particle Explorer, Earth Radiation Budget Satellite, Wide Field Infrared Explorer, and Fast Auroral Snapshot Explorer. The evaluations predominantly involve stressing “magnetometer-only” scenarios, i. e., using only a three-axis magnetometer to sense the attitude. Comparisons are made with attitude and rate knowledge obtained using coarse sensors and single-frame algorithms, and also with results from an Unscented Kalman filter with a more complicated attitude pameterization.

 

Bio

Dr. Murty Challa received a B.Sc. in physics from Andhra University, Visakhapatnam, India, and a Ph.D. in physics from the University of Georgia, Athens, Georgia. His professional interests and actvities include: estimation and data fusion algorithms such as Kalman filters, batch estimators, and simultaneous localization and mapping; track correlation/ association; guidance, navigation, and control for spacecraft and unmanned vehicles; missile defense; quantum computing; statistical mechanics; computational physics; solid state physics/ materials science. He is currently a member of the Senior Professional Staff of Johns Hopkins Applied Physics Laboratory (JHU/APL), Maryland, USA. Prior to JHU/APL, he was senior staff at Institute for Defense Analyses, Alexandria, VA, and at Computer Sciences Corporation supporting NASA Goddard Space Flight Center, Greenbelt, MD. Dr. Challa’s academic positions include post-doctoral appointments in physics at Michigan State University and Virginia Commonwealth University, and an adjunct position in physics at George Washington University. He has also served as a consultant to Iridium Satellite, LLC.

Laboratory for Computational Sensing + Robotics