LCSR Seminar: George Pappas “Information Acquisition with Autonomous Robots”

December 5, 2018 @ 12:00 pm – 1:00 pm
Hackerman B17
Ashley Moriarty


As the world is getting instrumented with numerous sensors, cameras, and robots, there is potential to transform fields as diverse as environmental monitoring, search and rescue, security and surveillance, localization and mapping, and structure inspection. One of the great technical challenges is to control the sensors, cameras, and robots intelligently in order to extract useful information. In this talk, I will present a unified approach for autonomous information acquisition, aimed at improving the accuracy and efficiency of tracking evolving phenomena of interest. I will formulate a decision problem for maximizing relevant information measures and focus on the design of scalable control strategies for multiple sensing systems. First, I will present an approximation algorithm for non-greedy informative planning with linear Gaussian models. The approach reduces the complexity in the length of the planning horizon and in the number of sensors and provides suboptimality guarantees. An application to active multi-robot localization and mapping will be presented. Next, I will remove the linear Gaussian assumptions and will address active object recognition and robot localization using detected objects. The techniques presented in this talk offer an effective and scalable approach for controlled information acquisition.



George J. Pappas is the Joseph Moore Professor and Chair of the Department of Electrical and Systems Engineering at the University of Pennsylvania. He also holds a secondary appointment in the Departments of Computer and Information Sciences and Mechanical Engineering and Applied Mechanics. He is member of the GRASP Lab and the PRECISE Center. He has previously served as the Deputy Dean for Research in the School of Engineering and Applied Science. His research focuses on control theory and in particular, hybrid systems, embedded systems, hierarchical and distributed control systems, with applications to unmanned aerial vehicles, distributed robotics, green buildings, and biomolecular networks. He is a Fellow of IEEE, and has received various awards such as the Antonio Ruberti Young Researcher Prize, the George S. Axelby Award, and the National Science Foundation PECASE.


Recorded Fall 2018 Seminars



Laboratory for Computational Sensing + Robotics