LCSR Seminar: Saeed Abdullah “Circadian Computing: Sensing and Stabilizing Biological Rhythms”

March 8, 2017 @ 12:00 pm – 1:00 pm
B17 Hackerman Hall


Rhythms guide our lives. Almost every biological process reflects a roughly 24-hour periodicity known as a circadian rhythm. Living against these body clocks can have severe consequences for physical and mental well-being, with increased risk for cardiovascular disease, cancer, obesity and mental illness. However, circadian disruptions are becoming increasingly widespread in our modern world. As such, there is an urgent need for novel technological solutions to address these issues. In this talk, I will introduce the notion of “Circadian Computing” – technologies that support our innate biological rhythms. Specifically, I will describe a number of my recent projects in this area. First, I will present novel sensing and data-driven methods that can be used to assess sleep and related circadian disruptions. Next, I will explain how we can model and predict alertness, a key circadian process for cognitive performance. Third, I will describe a smartphone based tool for maintaining circadian stability in patients with bipolar disorder. To conclude, I will discuss a vision for how Circadian Computing can radically transform healthcare, including by augmenting performance, enabling preemptive care for mental health patients, and complementing current precision medicine initiatives.



Saeed Abdullah is a Ph.D. candidate in Information Science at Cornell University, advised by Tanzeem Choudhury. Abdullah works on developing novel data-driven technologies to improve health and well-being. His research is inherently interdisciplinary and he has collaborated with psychologists, psychiatrists, and behavioral scientists. His work has introduced assessment and intervention tools across a number of health related domains including sleep, cognitive performance, bipolar disorder, and schizophrenia. Saeed’s research has been recognized through several accolades, including the $100,000 Heritage Open mHealth Challenge winner, a best paper award, and an Agile Research Project award from the Robert Wood Johnson Foundation.

Laboratory for Computational Sensing + Robotics