Johns Hopkins Scientist Programs Robot for “Soft Tissue” Surgery

May 6, 2016

Project aims to improve results for patients, expand availability of surgery


Not even the surest surgeon’s hand is quite as steady and consistent as a robotic arm built of metal and plastic, programmed to perform the same motions over and over. So could it handle the slippery stuff of soft tissues during a surgery?

Simon Leonard, a Johns Hopkins University computer scientist is part of a team that just published research showing that a robot surgeon can indeed adjust to the subtle movement and deformation of soft tissue to execute precise and consistent suturing. The research, which appears today in the journal Science Translational Medicine promises to improve results for patients and make the best surgical techniques more widely available.

Leonard, an assistant research professor in the Whiting School of Engineering, worked with five co-authors, all affiliated with the Children’s National Health System in Washington, D.C. – Azad Shademan; Justin D. Opfermann; Peter C.W. Kim; Johns Hopkins alumni Axel Krieger; and Ryan S. Decker.

“There’s a wide range of skills out there” among surgeons, said Leonard, who worked for four years to program the robotic arm to precisely stitch together pieces of soft tissue. Putting a robot to work in this form of surgery “really levels the playing field.”

Limited robotic automation is already used in surgeries involving rigid structures such as bones, which are much easier to hold still during the procedure. Soft tissue can move and change shape in complex ways as stitching goes on, requiring a surgeon’s skill to respond to these changes to keep suturing as tightly and evenly as possible.

According to the researchers, more than 44.5 million soft-tissue surgeries are performed in the United States each year.

The published results involved suturing two structures. This procedure called anastomosis, meaning joining two tubular structures such as blood vessels is performed over a million times a year in the United States. According to the researchers, complications such as leakage along the seams occur nearly 20 percent of the time in colorectal surgery and 25 to 30 percent of the time in abdominal surgery. Read more


Laboratory for Computational Sensing + Robotics